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Disclaimer
The information in this document has been funded wholly or in part by the U.S. Environmental Protection 
Agency (EPA). It has been subjected to the Agency’s peer and administrative review and has been approved 
for publication as an EPA document. Mention of trade names or commercial products does not constitute 
endorsement or recommendation for use. 

This work was performed under Interagency agreement DW89921928 with Sandia National Laboratories. 
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the 
United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

The CANARY software described in this manual is subject to copyright. It is free software that can be 
redistributed and/or modified under the terms of the GNU Lesser General Public License as published by 
the Free Software Foundation and to the terms of other third-party software licenses. Specifications of these 
terms are included with the CANARY software distribution.

The authors and the U.S. Environmental Protection Agency are not responsible and assume no liability 
whatsoever for any results or any use made of the results obtained from this software, nor for any damages 
or litigation that result from the use of this software for any purpose.
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Foreword
Since 1970, EPA has been working toward a cleaner and healthier environment for the American people. 
To help meet this mandate, EPA’s research program provides data and technical support for solving 
environmental problems today and for building the scientific base necessary to manage our ecological 
resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in 
the future.

Following the events of September 11, 2001, EPA’s mission was expanded to address critical needs related 
to homeland security. Presidential Directives identified EPA as the primary federal agency responsible for 
the country’s water supplies and for decontamination following a chemical, biological, and/or radiological 
(CBR) attack. To provide scientific and technical support in meeting this expanded mission, EPA’s National 
Homeland Security Research Center (NHSRC) was established. NHSRC is focused on conducting research 
and delivering products that improve the capability of the Agency to carry out its homeland security 
responsibilities.

As a part of this mission, NHSRC conducts research and provides technical assistance to support America’s 
drinking water utilities so they can improve their security preparedness, response, and recovery. Over the 
last several years, NHSRC has been developing new methods to help design, implement, and evaluate 
drinking water contamination warning systems. These new systems integrate a variety of monitoring 
technologies to rapidly detect contamination. One important question for contamination warning system 
implementation is how to analyze water quality sensor data to determine if a contamination event has 
occurred in a water distribution network. Since water quality data are often noisy, it is difficult to visually 
determine if contaminants are present in the network. This publication summarizes a large body of 
research addressing event detection issues and provides critical information for water utilities 
considering how to analyze water quality data to detect contamination in their own distribution 
networks.
NHSRC works with many partners to meet its responsibilities. This research was conducted in 
collaboration with EPA’s Office of Water, across the federal government working with the U.S. Department 
of Energy’s Sandia National Laboratories, and with the American Water Works Association and their 
member utilities.

This publication provides a comprehensive resource on event detection methods and case studies, and is 
intended for a broad audience of water utility staff, policy makers, and researchers. NHSRC has made this 
publication available to assist the water community in improving its security and optimizing the quality of 
our nation’s drinking water. This research moves EPA one step closer to achieving its homeland security 
goals and its overall mission of protecting human health and the environment.

Cynthia Sonich-Mullin, Acting Director 
National Homeland Security Research Center
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1.
Background and Purpose

Protecting our nation’s critical infrastructure from terrorist 
attacks has become a federal and local priority over the 
last several years. Under Homeland Security Presidential 
Directive 7, the United States Environmental Protection 
Agency (EPA) is the lead federal agency for protecting the 
water infrastructure in the United States. In this capacity, EPA 
has worked with public and private water utilities, federal, 
state and local agencies, and the public health community 
to develop assistance and research programs to improve 
the safety and security of drinking water systems. Water 
associations, community water systems, academia, private 
industry, and others have focused attention and research on 
developing new methods, policies, and procedures to secure 
drinking water and wastewater systems.

The Public Health Security and Bioterrorism Preparedness 
and Response Act of 2002 (Bioterrorism Act of 2002) 
required drinking water systems serving more than 3,300 
people to conduct vulnerability assessments and prepare 
or update emergency response plans that address a range 
of potential terrorist threats. In 2006, a report on the 
fourteen features of an active and effective security program 
informed the water community about the most important 
organizational, operational, infrastructure, and external 
features of resilient and secure systems (U.S. EPA 2006). 
Many representatives of the water sector joined together 
to prepare a sector-specific plan that coordinates activities 
across organizations (U.S. DHS et al. 2007). These activities 
have reduced water sector vulnerabilities through increasing 
awareness, hardening of critical assets, improved physical 
security, and more comprehensive response plans.

Recently, water security research efforts have focused on the 
advancement of methods for mitigating contamination threats 
to drinking water systems. A promising approach for the 
mitigation of both accidental and intentional contamination is 
a contamination warning system (CWS), a system to deploy 
and operate online sensors, other surveillance systems, rapid 
communication technologies, and data analysis methods 
to provide an early indication of contamination. CWSs 
with multiple approaches to monitoring – such as water 
quality sensors located throughout the distribution system, 
public health surveillance systems, and customer complaint 
monitoring programs – are theoretically capable of detecting 
a wide range of contaminants in water systems. However, 
CWSs are expensive to purchase, install, and maintain. To 
make CWSs a viable option, there is a clear need to minimize 
the investment required by individual drinking water systems.

The purpose of this report is to provide documentation on 
strategies and tools needed to assist in the application of an 
event detection system (EDS) as part of a CWS. EDSs are 
required to analyze the large volume of data from online 

water quality monitors, to differentiate normal water quality 
patterns from anomalous conditions, and to alert the operator 
to these situations. This report focuses on the event detection 
methodologies that have been developed by EPA’s Threat 
Ensemble Vulnerability Assessment (TEVA) Research Team, 
which is composed of researchers from EPA, Sandia National 
Laboratories, the University of Cincinnati, and Argonne 
National Laboratory. This team has developed several water 
tools including TEVA-SPOT – Threat Ensemble Vulnerability 
Assessment Sensor Placement Optimization Tool – (Berry et 
al. 2008; U.S. EPA 2009b) and CANARY (Hart et al. 2007; 
Hart et al. 2009). This report focuses on the research and 
development activities that led to the CANARY software.

Chapters 1-3 of this report are intended for a broad 
audience composed of water utility staff, policy makers, 
and researchers. These chapters describe the challenges in 
developing an EDS, the CANARY software and discuss 
frequently asked questions about how to implement the 
software at a field site. The remaining chapters of this 
report are intended for researchers and others who want 
to understand the methods implemented within CANARY 
in greater detail. These chapters present the algorithms 
underlying the methodology and some recent improvements 
and new features, some of which are still in the research stage 
and not yet implemented in CANARY. Appendix A presents 
a more detailed review of the event detection literature.

Drinking Water Contamination Warning 
Systems
Research on methods to mitigate the impacts of 
contamination incidents have converged over the last several 
years on the concept of a CWS. CWSs have been proposed as 
a promising approach for the early detection and management 
of contamination incidents in drinking water distribution 
systems (ASCE 2004; AWWA 2005; U.S. EPA 2005a). 
Through the Office of Water’s Water Security (WS) initiative 
(formerly WaterSentinel), EPA is piloting CWSs at a series of 
drinking water utilities.

An effective response to a water contamination incident 
is based on minimizing the time between the detection 
of a contamination incident and the implementation 
of effective response actions that mitigate further 
consequences. Implementation of a robust CWS can 
achieve this by providing earlier indications of potential 
contamination incidents than would be possible in the 
absence of a CWS. A CWS is a proactive approach that 
uses advanced monitoring technologies and enhanced 
surveillance activities to collect, integrate, analyze, 
and communicate information that provides a timely 
warning of potential contamination incidents.
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The WS initiative promotes a comprehensive CWS that 
is theoretically capable of detecting a wide range of 
contaminants, covering a large spatial area of the distribution 
system, and providing early detection in time to mitigate 
impacts (U.S. EPA 2005b). Components of the WS initiative 
include:

 Online water quality monitoring. Continuous online 
monitors for water quality parameters, such as free 
chlorine, total organic carbon, pH, conductivity, and 
turbidity, help to establish expected baselines for these 
parameters in a given distribution system. An EDS, 
such as CANARY (Hart et al. 2009), can be used to 
analyze data from these monitors in real-time to detect 
anomalous changes from the baseline and provide an 
indication of potential contamination. Other monitoring 
technologies can be used as well, such as contaminant 
specific monitors, although the goal is to detect a wide 
range of possible contaminants.

 Consumer complaint surveillance. Consumer 
complaints regarding unusual taste, odor, or appearance 
of the water are often reported to water utilities, 
which track the reports as well as steps taken by the 
utility to address these water quality problems. The 
WS Initiative is developing a process to automate the 
compilation and tracking of information provided by 
consumers. Unusual trends that might be indicative of 
a contamination incident can be rapidly identified using 
this approach.

 Public health surveillance. Syndromic surveillance 
conducted by the public health sector, including 
information such as sales of over-the-counter 
medication, reports from emergency medical service 
logs, calls from 911 centers, and calls into poison 
control hotlines, could serve as a warning of a potential 
drinking water contamination incident. Information 
from these sources can be integrated into a CWS by 
developing a reliable and automated link between the 
public health sector and drinking water utilities.

 Enhanced security monitoring. Security breaches, 
witness accounts, and notifications by perpetrators, 
news media, or law enforcement can be monitored and 
documented through enhanced security practices. This 
component has the potential to detect a tampering event 
in progress, potentially preventing the introduction of a 
harmful contaminant into the drinking water system.

 Routine sampling and analysis. Water samples can be 
collected at a predetermined frequency and analyzed to 
establish a baseline of contaminants of concern. These 
samples will provide a baseline for comparison during 
the response to detection of a contamination incident. 
In addition, this component requires continual testing of 
the laboratory staff and procedures so that everyone is 
ready to respond to an actual incident.

A CWS is not merely a collection of monitors and 
equipment placed throughout a water system to provide 
an intrusion or contamination alert. Fundamentally, it is 
an exercise in information acquisition and management. 
Different information streams must be captured, managed, 
analyzed, and interpreted in time to recognize potential 
contamination incidents and mitigate the impacts. Each 
of these information streams can independently provide 
some value in terms of timely initial detection. However, 
when these streams are integrated and used to evaluate 
a potential contamination incident, the credibility of the 
incident can be established more quickly and reliably than 
if any of the information streams were used alone. While 
the primary purpose of a CWS is to detect contamination 
incidents, implementation of a CWS is expected to 
result in dual-use benefits for network operations that 
will help to ensure its sustainability within a utility.

Although many utilities are currently implementing some 
monitoring and surveillance activities, these activities are 
either lacking critical components or have not been integrated 
in a manner sufficient to meet the primary objectives of a 
CWS – timely detection of a contamination incident. For 
example, although many utilities currently track consumer 
complaint calls, a CWS requires a robust spatial-temporal 
analysis system that, when integrated with data from public 
health surveillance, online water quality monitoring, and 
enhanced security monitoring, will provide specific, reliable, 
and timely information for decision makers to establish 
credibility and respond in an effective manner. Beyond each 
individual component of the CWS, coordination between 
the utility, the public health agency, local officials, law 
enforcement, and emergency responders, among others, is 
needed to develop an effective consequence management 
plan that ensures appropriate actions will occur in response 
to detection by the different components. An advanced 
and integrated laboratory infrastructure to support baseline 
monitoring as well as analysis of samples collected in 
response to initial detections is critical to timely response. 
In the absence of a reliable and sustainable CWS, a utility’s 
ability to respond to contamination incidents in a timely and 
appropriate manner is limited.

Online Monitoring and Event Detection 
Systems
The online monitoring component of a CWS is composed 
of multiple sensor stations that collect data continuously 
and transmit it to a central database in a control room, most 
commonly a Supervisory Control and Data Acquisition 
(SCADA) database (see Figure 1-1). In the rest of the 
report, “SCADA” is used to represent any type of data 
storage system. Various types of sensors, which can be 
categorized as direct or surrogate, have been considered as 
part of a CWS. Direct sensors detect specific contaminants 
whereas surrogate sensors indirectly detect the presence of 
one or more contaminants through changes in water quality 
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values. For example, pH, chlorine, electrical conductivity, 
oxygen-reduction potential, and total organic carbon can be 
considered as surrogate sensors for multiple contaminants. 
These typical water quality parameters tend to vary 
significantly in water distribution systems due to normal 
changes in the operations of tanks, pumps, and valves, and 
daily and seasonal changes in the source and finished water 
quality, as well as fluctuations in demands. Therefore, event 
detection systems are needed to distinguish between periods 
of normal and anomalous water quality variability from 
measures made with surrogate sensors.

A critical premise for online monitoring of surrogate 
parameters is that recognizable variations in water quality 
signals will occur in the presence of certain contaminants 
of concern. A number of recent experiments conducted in 
laboratory and pipe test loop systems have explored this 
assumption and concluded that many contaminants cause 

surrogate parameters to diverge significantly away from 
background levels (Byer et al. 2005; Cook et al. 2005; Hall et 
al. 2007). In particular, Hall et al. (2007) tested the response 
of a number of commercially available water quality sensors 
in the presence of nine different contaminants introduced to 
a pipe loop at different concentrations and found that at least 
one of the surrogate parameters changed in response to the 
presence of every contaminant.

Figure 1-2 shows data from another laboratory study by 
Hall examining the response of a chlorine sensor to the 
introduction of 15 different contaminants in a pipe-loop. 
These data were collected 24.3 m (80 feet) downstream of 
the contaminant injection point at EPA’s Test and Evaluation 
Facility in Cincinnati, Ohio (Hall et al. 2009). The black 
line shows the response of the chlorine sensor to two 
separate injections of each of the 15 contaminants. For more 
information about the experiments, see Hall et al. (2009).

Figure 1-1. Typical sensor station configuration for the first Water Security Initiative pilot city.
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Figure 1-2. Response of a free chlorine monitor (black line) to the introduction of different 
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Figure 1-2 shows that for 10 of the 15 contaminants, there 
is a significant deviation from the baseline chlorine levels as 
measured by the sensor. For five of these ten contaminants 
that cause changes in free chlorine, the decrease in the free 
chlorine concentration is 80% or more from the background 
levels. These rapid and significant shifts away from the 
background concentration of the free chlorine values can 
be considered as potential indicators of the presence of 
contamination.

While Figure 1-2 demonstrates the response of a single free 
chlorine sensor to various introduced contaminants, the goal 
of an EDS is not to simply analyze the response of a single 
sensor to the introduction of the contaminants, but to analyze 
the collective response of all sensors at the monitoring 
station. Other sensors (pH, dissolved oxygen, total organic 
carbon, and specific conductivity) were also examined 
in the same laboratory study. These results indicated that 
free chlorine and total organic carbon (TOC) are the most 
responsive surrogate parameters to the widest range of 
contaminants (Hall et al. 2007).

These laboratory studies suggest that water quality 
parameters (surrogates) will change rapidly and significantly 
in the presence of many contaminants of concern. However, 
real-world conditions in distribution systems involve much 
more complex background variations in water quality 
parameters than found in the laboratory (see Chapter 2). The 
purpose of an EDS is to automatically and rapidly distinguish 
between changes caused by the presence of contaminants and 
changes caused by normal background variability.

Typically, an EDS reads in SCADA data (e.g., water quality 
signals and operations data), performs an analysis in near 
real-time, and then returns the calculated probability of a 
water quality event occurring at the current time step. A water 
quality event is defined as a time period over which water 
with anomalous characteristics is detected. The working 
definition of “anomalous” can be set by the user by selecting 
configuration parameters that govern the sensitivity and 
operation of the EDS. The values of these configuration 
parameters might vary from one utility to the next and could 
even vary across monitoring stations within a single utility.

Increasing installation of online water quality sensors in 
distribution networks and their connection to SCADA 
systems has significantly increased the amount of water 
quality data available to system operators and network 
analysts. As an example, a modest online monitoring 
system consisting of ten monitoring stations with five 
water quality parameters monitored at a 5 minute sampling 
interval will provide 14,400 water quality records per 
day, or 5.26 million records per year. The possibility of 
massive amounts of real-time data overwhelming the 
operators and analysts is real, and automated approaches 
to making sense of these data are needed. Investment in 
automated approaches such as EDS will allow a utility 
to detect and characterize changes in the water quality as 
well as mine the historical data for recurring patterns and 
trends. Information derived from these data can then be 
used to more effectively operate the distribution network.

Summary of EDS Literature Review
Event detection from data collected in series over a 
length of time is a research topic in a large number of 
fields, including tsunami detection, traffic accidents 
analysis, mechanical component failure, system fault 
detection, data mining, and network intrusion detection 
among others. Based on reviewing developments in these 
other fields for their relationship and applicability to the 
EDS problem in water distribution networks, two main 
categories of event detection can be identified: offline 
and online. Offline, or batch mode, analysis is done on 
previously collected, or historical, data sets. Online, or 
real-time, analysis is done in real-time on data that are 
input to the EDS tool as soon as they become available.

A number of offline approaches to analyzing data collected 
over time can be classified as change point detection (see 
Ge et al. 2000b; Lai 1995; Raftery 1994; West et al. 1997). 
Change points are defined as the point in time where an 
abrupt change in the nature of a signal occurs. For example, 
the time at which there is a change in the source of water 
supplying a monitoring station can be a change point for 
the water quality at that station. A number of approaches 
to the change point detection problem exist, but the 
essential element is to examine data from opposite sides 
of a proposed change point to determine if those two data 
sets are significantly different. If they are, the point that 
best divides the two data sets is a change point. For offline 
analyses, the full data set has already been recorded and is 
available for analysis. In the online scenario, only the data 
recorded up to the present time are available, and the goal is 
to identify the change point as close to the time at which it 
occurs as possible. The constraint of making a determination 
as near to real-time as possible generally precludes the use 
of offline change point detection methods for water quality 
applications. The goal of an efficient water quality EDS is to 
develop an online approach to water quality event detection 
that can warn system operators in real-time about unexpected 
water quality conditions. Achievement of this goal generally 
requires use of online event detection algorithms.

Online EDS tools generally consist of a two-stage approach 
to event detection. The first stage predicts a future water 
quality value. This prediction is most often based on 
recently observed, historical water quality values. A wide 
variety of prediction tools are available, including neural 
networks, support vector machines, and calibrated water 
quality models. Our focus to date has been on traditional 
time series and multivariate statistical approaches (e.g., 
Box et al. 1976; Bras et al. 1993). Different statistical 
models applied to the previously observed data can provide 
predictions of future water quality values. The process of 
making the prediction is referred to as state estimation. In 
the second stage of event detection, the prediction of the 
expected water quality value is compared to the observed 
water quality value as it becomes available. The difference 
between the prediction and the observation is termed 
the residual and classification of the residual is used to 
determine if the water quality at that time step is either 
expected or anomalous. If the residual is relatively small, 
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the predicted and observed water quality values are similar 
and the water quality is as expected or representative of the 
background water quality. If the residual is relatively large, 
the observed water quality value is quite different from what 
was predicted, and this indicates an anomalous observation. 
This second stage is called residual classification.

To date, the majority of event detection methods for 
drinking water distribution networks involve monitoring 
of surrogate parameters. Observations of changes in 
common water quality measures such as free chlorine, 
pH and specific conductivity serve as surrogates for more 
specific monitoring of individual contaminants. A number 
of studies have demonstrated how different surrogate 
monitors react to the introduction of contaminants. 
Current approaches to event detection in drinking water 
distribution systems are described in: Byer et al. 2005; 
Cook et al. 2006; Jarrett et al. 2006; Kroll et al. 2006; 
McKenna et al. 2008; Yang et al. 2009. Other issues of event 
detection that are important to water quality monitoring 
include approaches to event detection that simultaneously 
incorporate information from more than one monitoring 
station and techniques that can be used to quantitatively 
evaluate the performance of event detection algorithms.

An in-depth review of existing literature in fields of change 
point and event detection is included in Appendix A. These 
topics are of interest in a number of technical fields with the 
majority of recent research driven by event and intrusion 
detection in computer science. The amount of published 
literature in the broad area of anomaly detection from time 
series data is vast. The majority of the water quality event 
detection publications are quite recent, reflecting a growing 
interest in water security. Appendix A also includes a 
glossary of event detection terms. Terms contained in the 
glossary are italicized on first use throughout this document.

CANARY Software Tool
The CANARY EDS software has been developed at Sandia 
National Laboratories in collaboration with EPA’s National 
Homeland Security Research Center (NHSRC). Additional 
functionality for reducing false alarms has been added to 
CANARY through engagement with the Singapore Public 
Utility Board (PUB). CANARY was written using the 
MATLAB® (MathWorks 2008) programming language 
and is distributed as both the MATLAB® source and as an 
executable program under an open source license. CANARY 
can be connected to a utility SCADA database directly or 
through a third party software connection. All water quality 
signals contained in the SCADA database can be used as 
input to CANARY. In addition to water quality data, these 
signals can also include hydraulic data such as tank levels, 
flow rates and valve settings as well as sensor hardware 
alarms and calibration alarms.

CANARY provides a platform within which different event 
detection algorithms can be developed and tested. These 
algorithms process the water quality data at each time step 
to identify periods of anomalous water quality. The end 
result of processing the water quality data at each time step 
is an indication of the probability of a water quality event 
existing at that time step. This probability is calculated with 
respect to the recent water quality values. Recent additions 
to CANARY allow for multivariate water quality pattern 
recognition to reduce false alarms in the presence of changes 
in water quality signals created by utility operations.

CANARY is intended as a research tool to help water 
utilities and others in the water community better understand 
normal background fluctuations in water quality and to 
begin to identify anomalies that are potentially indicative 
of contamination incidents. To be used as part of a CWS, 
the utility must integrate CANARY with a well-tested 
consequence management plan in order to respond effectively 
and in a timely manner to potential contamination threats.

Report Overview
This report is divided into several distinct chapters that 
do not need to be read in order. The first three chapters, 
including this Background section, are intended for a broad 
audience composed of water utility staff, policy makers, 
and researchers. The next four chapters are intended 
for researchers and others who want to understand the 
EDS methods in greater detail. The final chapter outlines 
outstanding challenges and research needs.

The report is organized as follows:

• Chapter 2 presents a series of frequently asked questions 
(FAQs) that provide the EDS user with some general 
understanding of the event detection approach utilized. 
These FAQs also explore some of the fundamental 
assumptions and constraints on event detection.

• Chapter 3 provides an introduction and background to 
the CANARY water quality event detection software.

• Chapter 4 provides a technical overview of the event 
detection algorithms and their use within CANARY.

• Chapter 5 summarizes results of testing and sensitivity 
analysis of the CANARY algorithms.

• Chapter 6 describes a pattern matching technique to 
reduce false positive alarms.

• Chapter 7 provides the basis for a distributed approach 
to event detection, fusing data from multiple monitoring 
stations.
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2.
A Discussion on Event Detection

This chapter attempts to address some commonly asked 
questions about the need for an event detection system 
(EDS), the role of an EDS in routine monitoring, and the 
ability of an EDS to perform well amidst great variability 
in water quality data.

Why Not Just Use Set Points (Thresholds)?
Currently, many water utilities utilize set points in order to 
set alarms on online water quality monitors. “Trigger levels” 
or “set points” are a simple way to identify when water 
quality parameters are outside of an expected range of values. 
For example, if the free chlorine levels drop below 0.6 mg/L 
or rise above 1.5 mg/L, it is outside the expected range as 
defined by a utility operator, and further investigation into 
the source of the anomalous water quality is warranted. 
Traditionally, water utilities use set points to identify changes 
in water quality parameters that are undesirable no matter 
what the cause. For example, free chlorine levels near zero 
are a problem that needs to be communicated immediately to 
an operator.

Set points provide alarms when the actual value of the water 
quality signal goes above or below the set point value. EDS 
tools are designed to identify water quality values that are 
significantly different from the background values whether 
or not they exceed the set point limits. The event detection 
algorithms in CANARY continuously adapt to changing 
water quality values and look for significant deviations from 

that changing background. As an example, the blue line 
in Figure 2-1 shows water quality data from a particular 
monitoring station that routinely varies over time due to 
changes in the utility operations. The blue line represents 
normal behavior in the system, and reasonable set points of 
0.5 and 3.5 mg/L are used. The magenta line in Figure 2-1 
shows an example of a water quality event that would not 
be detected by set points; however, it nearly triples the value 
of the background water quality for those time steps. This 
significant change in water quality would be detected by an 
EDS. In other words, some contamination incidents might 
not cause water quality parameters to move outside of set 
point boundaries, but still cause significant changes in water 
quality and will be detected by an EDS.

This example points out a key tenet of effective event 
detection: the changes of interest are not just changes in the 
absolute values of the water quality but changes relative to 
the water quality values expected to occur at the specific 
location and time. EDS algorithms can improve upon the use 
of fixed threshold values in many situations.

The use of multiple sensors at a monitoring station also 
complicates the simple set point approach to event detection. 
As demonstrated schematically in Figure 2-2, a change 
in water quality occurs that affects all three water quality 
sensors (e.g., pH, chlorine, and total organic carbon), yet 
only one of those sensors (Signal 1) registers a change that 
exceeds a set point threshold.

Figure 2-1. Background water quality signal (blue) with superimposed water quality 
event (magenta).
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Figure 2-2. Schematic diagram of changes in three different water quality signals over 
time. The dashed lines represent set points for each signal.
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The water quality response demonstrated in Figure 2-2 
would only be recognized by a set point in Signal 1. 
The strong relative changes in Signals 2 and 3 would go 
unrecognized and would not provide any information to 
better identify the cause of the water quality change. In 
contrast, an EDS tool examines relative changes in all three 
signals in order to detect a water quality event. In general, 
EDS tools can identify relative changes in water quality 
while simultaneously incorporating set point limits into the 
EDS algorithms.

What Can One Expect to Find With an EDS?
Experience in examining water quality data from a number 
of utilities and multiple monitoring stations at each utility has 
shown that a variety of different types of anomalous signals 
do occur in utility water quality datasets. The root cause of 
these different types of anomalous signals is not always clear 
and is often specific to the utility and the monitoring station. 
Example causes include one or more of the following: 
changes in hydraulic operations at the utility, recalibration 
of sensors, missing or spurious data within the Supervisory 
Control And Data Acquisition (SCADA) system, unexpected 
failure in utility infrastructure such as a break in a main or 
failure of a booster station, water quality sensor malfunction, 
or other relatively common acts that can cause a change in 
water quality.

These commonly seen water quality changes are classified 
by the CANARY EDS into several different groups and 
examples of these groups are shown in Figure 2-3. The terms 
used for each group are:

• Baseline Change: A sudden and persistent change 
in the mean value of a water quality signal over 
several hours or more of data. Baseline changes 
are often due to changes in utility operations that 
cause water with different quality characteristics to 
flow through the monitoring station. For example, 
a baseline change could be caused by a valve or 
a pump being turned on or off that delivers water 
with a different background water quality or the 
draining of a nearby tank with water of a different 
age than was previously at the monitoring station.

• Outlier: An unexpected value in water quality at a 
single time step. Water quality values are estimated 
ahead of the measurement and if there is a significant 
difference between the estimated and observed water 
quality values, that time step is considered as an 
outlier. Nearly every water quality data set examined 
by the authors has outliers similar to those shown in 
Figure 2-3. These are single time steps where the water 
quality value suddenly rises or falls and then returns 
back to the expected value again in the next time step. 
In general, these types of outliers are thought to be due 
to noise in the SCADA system and should not be the 
cause of an alarm from an EDS tool. CANARY allows 
the user to determine how many outliers are needed 
prior to declaring a water quality event.

• Event: Measured water quality values that are 
significantly different from the expected water quality 
values for at least a specified minimum number of time 
steps. This definition does not define the cause of the 
water quality event. The number of time steps and the 
level of difference from the expected water quality 
needed to declare an “event” will often vary from 
one monitoring station to another within a utility and 
these parameters are adjustable by the user within the 
CANARY software.

In general, an outlier is a single time step with water quality 
that is significantly different than expected. Both events 
and baseline changes are groups, or clusters, of outliers that 
occur within a specified time frame. The major difference 
between a baseline change and an event is the length of time 
over which the outliers occur. The early stages of a baseline 
change are no different than an event, and the water quality 
analyst will often need to look at other information, most 
notably network operations information, to discriminate a 
baseline change from an event.
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What About Variation in Water Quality and 
Regular Changes Due to Operations?
Online continuous monitoring at many utilities shows 
that there are significant variations in water quality that 
can be linked to operation of the utility. The underlying 
mechanisms can be demonstrated using a schematic network 
in Figure 2-4. Here a single water quality monitoring station 
can receive water from two different sources: the tank and the 
reservoir. The amount of each type of water at the monitoring 
station for any given time is a function of the valve setting 
at the tank and the pump operations at the reservoir. Both of 
these variables are known and recorded by utilities, but the 
uncertain, random quantity and spatial distribution of water 
demands between the two water sources and the monitoring 
station make it nearly impossible to predict the exact mix 

of the two waters reaching the monitoring station at any 
time. This situation is further complicated by the network 
having more than one pathway from each water source to the 
monitoring station. For the same reasons that it is difficult 
to predict the ratio of the two water sources arriving at the 
monitoring station, it is also difficult to track the effects of 
a change in water quality operations from the point where it 
occurs to the monitoring station. A closing of the tank valve 
would mean that the entire network will now be supplied 
solely by the reservoir, yet the time needed for the remaining 
tank water in the network to be removed through demand and 
the time it takes for the reservoir water to comprise 100% of 
the water at the monitoring station remain unknown, again 
due to uncertain demands.

Figure 2-3. Examples of different types of changes in a water quality signal. Only a single 
example of each type of change is highlighted in the figure.

Figure 2-4. Schematic network containing two sources of water: reservoir and tank.
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Figure 2-5 shows roughly one week of water quality data 
observed at one monitoring station within a large municipal 
distribution network. Free chlorine (Cl) and pH data 
were collected at a sample interval of 2 minutes and 5000 
measurements are shown for a total of one week. No water 
quality events are known to have occurred during this period 
and thus all data is assumed to be indicative of background 
water quality conditions. The chlorine data (green line) 
show relatively long (duration of approximately 200 time 
step, or 400 minutes) increases of roughly 0.25 mg/L spread 
throughout the observed data with seven of these increases 
occurring during this week. These increases in chlorine are 
matched by changes in pH (black line). At the beginning of 
the week, the pH decreases when Cl increases but by the end 
of the week, the increases in Cl are coupled with increases 
of 0.1 in pH. Some shorter-term changes of approximately 

50 time steps (100 minutes) in length where Cl increases and 
pH decreases are also present. These shorter-term changes 
only occur in the first half of the data shown. Figure 2-5 
demonstrates the magnitude of the changes that can be 
caused by utility operations, in this case pumps turning on 
and off, as well as the complexity of these changes.

EDS algorithms can be trained to expect variations such as 
those shown in Figure 2-5. Once the EDS has learned that 
these variations are to be expected on a regular basis, the 
EDS will no longer alarm during these regular periods of 
change (see Chapter 6 for a more detailed discussion). In 
addition, judicious selection of parameters within the EDS 
software can be used to reduce false positive event detections 
in these circumstances.

Figure 2-5. Example of water quality data changes caused by operations changes.
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3.
Canary Software: The Basics

An introduction to the CANARY software, how it operates, 
and some key parameters are discussed in this chapter. 
Additional technical details on all of these aspects are 
contained within the later chapters of this report, and can be 
found in the CANARY User’s Manual (Hart et al. 2009).

What Is CANARY? 
The CANARY software reads water quality monitoring 
data in real-time from a utility’s Supervisory Control and 
Data Acquisition (SCADA) system. Water quality event 
detection algorithms within CANARY automatically identify 
significant deviations from expected water quality values at 
each time step for which the sensors provide data. 

CANARY has been developed at Sandia National 
Laboratories in collaboration with and with funding from 
EPA’s National Homeland Security Research Center 
(NHSRC). CANARY is distributed as open-source software 
and was first released publicly at the American Water Works 
Association (AWWA) Water Security Congress in early 
April of 2008. CANARY implements statistical algorithms 
for estimating the expected value of the water quality, state 
estimation, and subsequent classification of the residuals 
between measured and predicted water quality values. More 
detail and examples of using these algorithms are provided in 
Chapters 4, 5 and 6 of this document. CANARY is designed 
to be extensible, allowing researchers to modify existing 
algorithms or incorporate new algorithms easily. CANARY 
has been deployed at Greater Cincinnati Water Works 
(GCWW), the first EPA Water Security (WS) Initiative pilot 
utility, for over a year. In addition, several other U.S. water 
utilities are planning to deploy CANARY in the near future. 
Sandia National Laboratories is currently also working with 
Singapore national water utility, PUB to deploy CANARY. 
For more information about obtaining CANARY see:  
http://www.epa.gov/nhsrc/water/teva.html.

CANARY reads in time series data to identify anomalous 
water quality events. CANARY can read data from any 
sensor manufacturer for any type of water measurements and 
any number of sensors. Typical applications have included 
five to seven sensors, including some combination of free 
chlorine, pH, specific conductivity, total organic carbon 
(TOC), oxidation reduction potential (ORP), temperature, 
and turbidity.

Water quality monitoring data are transmitted through a 
SCADA system to a central database. CANARY is capable 
of linking to this database directly or through third-party 
interface software. CANARY can then gather and read 
the data in real-time. Experience to date shows that most 
utilities use a sampling interval of somewhere between 2 to 
15 minutes as dictated by the particular requirements and 
SCADA system of each utility. CANARY processes these 

data in real-time and outputs the probability of a water quality 
event occurring at that monitoring station. This probability 
value can be transmitted back to the SCADA system for 
storage and display on the network operator’s console. 

CANARY is operated through use of an Extensible 
Markup Language (XML) formatted text file known as 
a configuration file. All data inputs and event detection 
algorithm parameters are defined in this configuration file. 
Sensor and SCADA alarm flags are defined in this file 
such that data received during a sensor hardware failure or 
during a manual calibration of the sensor are automatically 
recognized as not being quality data and are ignored in the 
event detection algorithms. To assist users, a configuration 
file editor with a graphical user interface is distributed as part 
of CANARY and is detailed in the CANARY User’s Manual 
(Hart et al. 2009).

An example of event detection by CANARY is provided 
in Figure 3-1. In this example, four water quality signals 
from a real water system that have been modified to 
simulate an event are used as input to CANARY: free 
chlorine, pH, specific conductivity and temperature as 
shown in Figure 3-1a (Allgeier et al. 2008). The chlorine 
signal is exceedingly stable during this time period while 
the temperature and conductivity signals are variable. 
Figure 3-1b shows the probability of an event as predicted 
by CANARY (blue squares) and the relative concentration 
of the contaminant as it moves past the monitoring station 
(magenta line). Examination of Figure 3-1b shows that 
CANARY detects the contamination event approximately 
15 time steps (30 minutes) after the contamination arrives 
at the monitoring station. The probability of an event 
occurring as calculated by CANARY rapidly increases 
to a value of 1.0 over approximately 15 time steps and 
stays at 1.0 until the event passes the monitoring station. 
The lag time between the arrival of the contamination 
and the increase in the calculated probability of an event 
is determined by the user-defined parameter settings in 
CANARY. Integrating results over greater numbers of 
time steps prior to increasing the probability of event 
generally results in a fewer number of false positive 
detections, but at the expense of increasing the delay 
between arrival of an event and declaration of that event. 

Figure 3-1 also demonstrates a key ability of CANARY in 
that it continues to calculate a probability of event equal 
to zero prior to the time of the true event even though the 
water quality signals display considerable variation during 
this period. This ability is essential for reducing false event 
detections when presented with noisy data typical of most 
water quality monitoring networks.

CANARY provides the probability of an event at each 
time step for each monitoring station. These probabilities 

http://www.epa.gov/nhsrc/water/teva.html
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Figure 3-1. Example event detection using CANARY; (a) shows the water quality data and 
(b) shows the relative concentration of the contaminant and the CANARY output, which is 
the probability of an event.

 

(a)

(b)

are calculated independently for each monitoring station. 
The number of monitoring stations that can be analyzed 
simultaneously in real-time is also theoretically unlimited. At 
the pilot utility, CANARY is running on a single processor 
desktop computer reading in real-time data across 15 to 20 
monitoring stations. Each monitoring station includes four 
or five water quality signals sampling on a 2 minute interval. 
Experience shows that CANARY could handle many 
additional sensors and still achieve real-time performance.

CANARY provides a stable software platform on which to 
extend the event detection algorithms to incorporate utility 
operations data. All of the necessary connections to real-time 
SCADA systems, the ability to incorporate sensor alarms, the 
text file user interface, and the experiences gained through 
previous deployment of CANARY will facilitate efficient 
extension and testing of the algorithms within CANARY to 
incorporate network operations data.

How Does CANARY Work? 
CANARY works by reading in real-time (online) or historical 
data (offline), using a set of algorithms to analyze the data, 
and returning the probability of an anomalous water quality 
event. All of the algorithms within CANARY are based on 
the premise that past water quality observations can be used 
to accurately predict future water quality values under normal 
conditions. Additionally, CANARY recognizes that not all 
of the past data contains useful information and therefore 
less emphasis is placed on some previous information 
through filtering. Event detection within CANARY can 
be conceptualized as examination of a signal (e.g., pH) to 
identify its component parts. For an observed water quality 
signal (S) coming from a sensor, the signal is composed 

of the background water quality (B), any deviation from 
that background (D) due to an anomalous event, such as a 
contamination process upstream of the sensor, and noise (N) 
inherent in the water quality monitoring system.

For the most part, there are no anomalous events, and 
therefore, the deviations away from the background values 
are zero and the observed signal is simply the value of the 
background water quality along with the noise inherent in 
the measurement. The algorithms in CANARY are designed 
to continuously update and learn the characteristics of this 
background water quality signal and then account for it 
when presented with a new water quality observation. Each 
component of the observed signal (B, D, and N) could be 
further dissected into various sub-components. For example, 
noise is due to sensor imprecision, drift in the instrument, 
and transmission errors in the SCADA system, but that level 
of detail is beyond the scope of this discussion (see Einfeld 
et al. 2008). This simple model of a water quality signal is 
sufficient to understand how CANARY works.

Four steps are involved in the event detection algorithms 
deployed in CANARY: 1) Estimation of the future water 
quality values; 2) Comparison of the estimated values against 
observed values as they become available and calculation 
of the “residual” as the difference between estimated and 
observed values; 3) Integration or “fusion” of the residuals 
across all water quality sensors at the monitoring station; 
and 4) Calculation of the probability of a water quality event 
occurring at each measurement time for each monitoring 
station from the residual data using a binomial event 
discriminator (BED). These steps are shown schematically in 
Figure 3-2 and each step is defined in more detail below.
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Step 1: Estimation

For each time series of data provided by a single sensor, 
CANARY looks across a pre-defined set of previous time 
steps and uses the data in this window to predict the value 
of the next time step. The data values within the window 
are first normalized to have a mean of zero and standard 
deviation of 1.0. This normalization removes the units of 
measurement so that the different signals with potentially 
very different units of measurement can be easily combined 
later. Two approaches to estimation are available within 
CANARY: linear filtering and multivariate nearest neighbor.

Linear filtering: At each time step, an optimal set of weights 
is determined to apply to each of the previously measured 
standardized observations for each water quality signal. The 
weights are calculated using an auto-covariance function 
computed independently for each signal. This calculation 
allows the assigned weights to reflect the importance of the 
previous value in the prediction of the next value no matter 
how far in the past that value has occurred. For example, in 
many systems where tanks are filled at night, then drained 
during the day, the free chlorine value observed 24 or even 
48 hours ago often has greater bearing on the prediction 
of the current free chlorine value than does an observation 
from only 4 or 6 hours ago. These weights are calculated 
automatically within CANARY and are updated at each 

time step. The weighted average of the predefined set of 
previous values then serves as the prediction of the water 
quality value at the next time step. If the background water 
quality is perfectly understood and its characteristics do not 
change over time (no seasonal effects) and the noise in the 
system was zero, the linear filter algorithm would be able to 
perfectly predict the water quality value at each new time 
step. In such an ideal situation, the background signal would 
be completely accounted for, or filtered out of the observed 
signal, and any deviations from the background would be 
readily apparent.

Nearest neighbor lookup: The second approach to estimation 
also uses the water quality values at the predefined set of 
previous time steps. Grouping together water quality values 
from n different sensors at one monitoring station (e.g., if 
measuring for free chlorine, pH, and specific conductivity 
measurement, then n = 3), the set of values at each time step 
can be considered as a point in n-dimensional space. All of 
the data from previous time steps can be mapped as points 
in this space, and then the distance from any point to another 
can be calculated. At each new time step, a new point in 
n-dimensional space is created, and its “nearest neighbor,” 
or the closest point in the previous set serves as the predicted 
value for this time step.

Figure 3-2. Steps in the CANARY event detection process, including 1) estimation, 
2) comparison, 3) residual classification, and 4) probability calculation.
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Step 2: Comparison

As the observation at the current time step becomes 
available through the SCADA system, it is normalized 
using the same process as the background data. This new 
normalized observation is then compared to the predicted 
value and a residual (difference between the predicted and 
measured) value is calculated. The units of this residual 
are the number of standard deviations that the estimated 
value is away from the observed value. This process is 
repeated for each water quality sensor at the monitoring 
station. The end result of this comparison step is a residual 
value for each water quality sensor. For the linear filter 
approach, the residual values are in common units of 
standard deviations away from each respective estimated 
water quality signal value. In the multivariate nearest 
neighbor approach, the residual values are also in units 
of standard deviations. Because the residual is measured 
within the n-dimensional space, there is only one residual 
distance no matter how many different sensors are used.

Step 3: Residual Classification

The maximum residual value across all different water 
quality sensors at the monitoring station for the current time 
step is compared to a user defined threshold value, which 
is also in units of standard deviations. If this maximum 
residual value exceeds the threshold, the water quality at 
that time step is classified as an “outlier” and is excluded 
from the values used to predict water quality at the next time 
step. Other approaches to combining residuals have been 
examined including summing and averaging residuals, but it 
has been found that retaining the maximum residual for each 
time step provides the best overall results.

Step 4: Probability Calculation

Finally, the number of water quality outliers (observations 
that are significantly different from the estimated or 
expected) is analyzed to provide the probability of a water 
quality event existing at the current time step and in a 
given monitoring station. Experience with monitoring 
water quality data in several distribution systems has 
shown that outliers will occur with some frequency 
due to spreading of different types of source waters 
(e.g., ground water and surface water) throughout the 
network at different times, sensor hardware performance 
issues, as well as issues within the SCADA system.

Given that some number of outliers is to be expected, 
CANARY counts the number of outliers that occur in a user-
specified time frame. For example, some outliers only last for 
a few time steps and could be due to SCADA communication 
failures or sensor malfunction. The number of outliers 
occurring within that time frame, along with knowledge 
of the likelihood of an outlier occurring under normal 
background water quality conditions, provides the necessary 
information for CANARY to calculate the probability of 
this number of outliers occurring under normal background 
conditions. A mathematical function called the binomial 
distribution is used to calculate a time-integrated probability 
of a water quality event (P(event)). The probability of an 

event (P(event)) is 1.0 minus the probability of background 
conditions prevailing (P(backgrd)).
As an example: if 12 time steps in a row are examined, and 
the chance of an outlier in any single one of those 12 time 
steps was 20%, then the chance of observing 8 outliers out 
of the 12 time steps examined would be extremely low. 
The probability that those observations are indicative of 
background conditions is extremely low. The binomial 
distribution can be used to predict the probability that these 
observations were caused by background water quality 
conditions, P(backgrd), which can be quantified: P(backgrd) 
= 0.0005 (this calculation was done with Microsoft® Excel® 
software using the binomdist function). For this example, the 
probability of a water quality event P(event) causing these 
8 outliers is 0.9995. In other words, it is so rare to observe 
8 outliers in 12 time steps that the probability that this is a 
water quality event is nearly 100%. The graph in Figure 3-2 
demonstrates how P(event) changes as the number of 
outliers observed within 12 time steps increases from zero 
to 12 under the assumptions of the binomial distribution as 
discussed above.

The Binomial Event Discriminator (BED) within CANARY 
provides a means of combining the results of multiple 
successive time steps into a time-integrated probability 
of an event (P(event)). The BED employs the properties 
of the binomial distribution as described above to define 
P(event) as a function of the number of outliers within the 
BED integration window, the length of the BED integration 
window, and the probability of an outlier occurring at any 
given time step under an assumption of background water 
quality conditions (see McKenna et al. 2007 for more 
details). User specification of these parameters allows 
for maximum flexibility in the definition of an event and 
sensitivity of the event detection process. The drawback of 
integrating results over multiple time steps in this way is that 
there will be an additional lag time between the true onset of 
the event and the time at which CANARY detects an event 
(which depends on the time it takes the BED to increase the 
P(event) value). However, testing at partnering water utilities 
has shown that this disadvantage is significantly outweighed 
by the advantage of decreased false alarms that result from 
the BED integrating evidence for an event over multiple time 
steps.

How Accurate Are CANARY Predictions?
Historical water quality data from water utilities can be used 
to measure the accuracy of CANARY predictions. However, 
these data sets generally are not known to contain true water 
quality events of interest (i.e., contamination and cross-
connections), as these types of events are generally quite 
rare in utility operations. Using such historical data, two 
performance measures can be derived: the accuracy of the 
water quality estimations made by CANARY and the number 
of false positive alarms. Both of these performance measures 
are explained below. 

At each time step, CANARY uses previous data to estimate 
the value of each water quality signal at the next time step 
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and then calculates the difference between the estimated and 
measured values. An example of the estimated water quality 
values compared to the actual measured water quality values 
is shown in Figure 3-3. The blue line is the historical data 
and the pink line is CANARY’s estimate of water quality 
based on the data from previous time steps. Figure 3-3 shows 
the estimated and measured values in the original units of the 
water quality signal (e.g., ppm). The results in Figure 3-3 
show that the algorithms within CANARY are able to 
estimate the next water quality value with high accuracy. 
The estimated signal value tracks the observed signal value 
closely through an increase of the chlorine values of 0.35 
ppm (30%) over a three hour period. The estimated values 
also track the relatively quick 0.3 ppm decrease in chlorine 
at about 17:00. The largest difference between the estimated 
and observed values is seen at the end of this decrease and is 
approximately 0.07 ppm.

Within CANARY, the observed values are normalized so that 
the mean observation is zero and the standard deviation of 
the observations is one. Examples of the observations and 
estimates of the same data in this normalized scale are shown 
in Figure 3-4. For this example, the mean and standard 
deviation are calculated over a moving window that is 1440 

time steps in length, which is much longer than the 180 time 
steps shown in the figure. The example in Figure 3-4 shows 
chlorine values below the moving average (negative values) 
at both ends of the figure and a period of time where the 
chlorine values rise to more than 3 standard deviations above 
the moving average.

The pattern of observed and estimated values is identical to 
that shown in Figure 3-3; however, the values in Figure 3-4 
are now in units of standard deviation and they can be 
compared directly to any other water quality signal that has 
also been normalized. Figure 3-4 also shows the residual 
values (grey line) calculated as: residual = observed-
estimated. The residuals are also in units of standard 
deviation and provide the number of standard deviations 
between the observed and estimated values. The absolute 
value of each residual is compared against a threshold 
defined by the user. A typical threshold value is 1.0 standard 
deviation. In Figure 3-4, all residuals are less than this 
typical threshold value, with the largest residual (-0.83) 
occurring as the chlorine level drops near a time of 17:00. 
Therefore, none of the residuals in Figure 3-4 exceed the 
threshold and none of the data are considered to be outliers.

Figure 3-3. Observed (blue line) and estimated (pink line) chlorine values for a 
6 hour period at a utility monitoring station. The sampling interval is 2 minutes and 
6 hours (180 time steps) of data are shown.
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The residual values can be used to define the first 
performance measure that calculates how well the current 
parameter settings in CANARY are able to predict the water 
quality values. Here the average absolute error was calculated 
as the average of the absolute values of all residuals. For 
the data shown in Figure 3-3 and Figure 3-4, the average 
estimation error is 0.094 standard deviations. Given that the 
fluctuations of the background water quality have a standard 
deviation of 1.0, this result indicates that CANARY is able 
to predict water quality with an average error of less than 
0.1 the standard deviation of the background variation. This 
result reflects the ability of CANARY to not only track 
major trends in the water quality, but also predict the minor 
fluctuations in water quality around those trends. Both 
aspects of these prediction results are seen in Figure 3-4.
Figure 3-5 helps to explain the second performance measure: 
the false positive rate. If an event occurs, then the EDS tool 
can make the correct decision and detect the event (green 
box) or make a incorrect decision and not detect the event, 
so this is called the false negative (red box). Similarly, if no 
event occurs, then the EDS tool can make a correct decision 
by not detecting the event (green box) or make an incorrect 
decision by detecting an event and this is called the false 
positive (blue box).

Typically, false positives are a nuisance for the utility 
operator, since the utility must then take steps to investigate 
whether it is a true event or not. The false negative results are 
more serious, since, in this case, a true event is not detected 
and the utility will not be aware of this situation. Using 
historical data with no known events, only the EDS results in 
the right column of Figure 3-5 can be assessed.

To evaluate the performance of an EDS with respect to 
false negatives, it is necessary to have a water quality 
data set that contains actual events. Some historical data 
sets might contain a few water quality events resulting 
from main breaks or other unexpected factors that change 
water quality, but typically there are not enough of these 
events available to fully evaluate EDS performance. A 
solution to this lack of event data is to add simulated 
water quality events to the existing background water 
quality data. For example, the deviations in water quality 
due to contaminant injection, recorded by Hall et al. 
(2007), can be superimposed onto an existing historical 
water quality data set to provide events for testing.

Rather than count the number of individual time steps that are 
classified as false positives, the number of distinct clusters, 
or groups, of false positives could be used as a performance 
measure. Calculation of the mean prediction error and the 
number of clusters of false positives within a data set are the 
measures used to evaluate the performance of CANARY. As 
shown in the next FAQ, these performance measures can be 
used to determine some of the parameters needed for running 
CANARY on a data set.

How Are the CANARY Algorithm 
Parameters Set?
The algorithms used in CANARY rely on a number of user-
defined parameters (see Chapter 6 of the CANARY User’s 
Manual, Hart et al. 2009). The selection of these parameters 
will influence CANARY’s performance as measured by 
false positive and false negative rates. Experimentation 
using historical water quality data allows for determining 

Figure 3-5. Possible event classification results when compared to 
the true condition.
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the optimal parameter set for a desired false alarm (false 
positive) rate. This approach is demonstrated here and more 
detailed examples are given in Chapter 5 of this report. 

For simplicity, only two of the parameters within CANARY 
are considered and adjusted here. These two parameters are: 
1) the length of the time window used to predict the next 
water quality value, P; and 2) the value of the threshold 
(thresh) against which the largest residual is compared 
to determine whether or not it is an outlier in the residual 
classification process. In general, the larger the number of 
previous measurements included in the prediction of the 
future values, the more accurate that prediction will be. 
However, if P becomes too large, the computational load 
could increase to the point of making real-time estimation 
impractical. Also, the lower the value of thresh, the more 
sensitive CANARY will be to outliers in the data and the 
number of outliers identified and therefore the number of 
events identified will increase. Each identified outlier is 
then kept out of the history window used to estimate values 
of water quality at future time steps. If too many previous 
values are excluded from the estimations of future water 
quality, the accuracy of the predictions will degrade. 

As an example of how to set these two parameters 
within CANARY, two water quality data sets are used to 
demonstrate how changing these two parameters affects 
the ability of CANARY to estimate the next water quality 

values and the number of false positive event declarations. 
As discussed above, in most practical settings, access to 
historical data containing a large number of actual water 
quality events is not possible. Therefore, the impact of 
various parameter settings on the accuracy and precision 
of the predicted water quality values as well as the number 
of false positive alarms are used to evaluate the parameter 
choices. This same approach would be used with historical 
water quality data in most practical applications of CANARY. 

The data sets used here are from a large metropolitan 
water distribution network in the U.S. Four water quality 
parameters are examined: free chlorine (Cl), pH, total organic 
carbon (TOC), and specific conductivity (CDTY). For each 
monitoring station, a data set consisting of 28,082 time 
steps with a 2 minute sampling interval (approximately 39 
days), collected between March 1st and April 9th is employed 
(Figure 3-6 and Figure 3-7). Location A represents an 
environment with a relatively quiet background water 
quality, and Location B represents a monitoring station with 
significant changes in water quality due to daily changes in 
utility operations. Data sets from both monitoring stations 
have periods where the TOC values are missing. CANARY 
will keep running as long as there is one data signal available. 
It will calculate probabilities based on the available other 
signals, and as soon as TOC data is available it will include it 
in the analysis of probabilities.

Figure 3-6. Water quality data from four water quality sensors as recorded at Location A. 
The water quality signals are (a) free chlorine (Cl), (b) pH, (c) total organic carbon (TOC), 
and (d) specific conductivity (CDTY).
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Five levels of the time window are examined and five 
levels of the threshold value are also considered for 25 
combinations of P and thresh. These parameter values are 
shown in Table 3-1. The parameters that are used in the 
binomial distribution to define the probability of an event 
are fixed here such that out of 25 consecutive time steps, 
18 of them must be outliers to signal an event. If an event 
is identified, the next 125 time steps must be considered 
outliers as well before a baseline change in the water quality 
is declared. The parameters used in the calculation of the 
probability of an event and then declaring an event or a 
baseline change are held constant throughout this exercise. 

Table 3-1. Parameter settings examined in example 
calculations.

Window Length, P, 
Time steps (days)

Threshold, “thresh” 
(std. dev)

360  (0.5) 0.6

720   (1) 0.8

1080  (1.5) 1.0

1440   (2) 1.2

1800  (2.5) 1.4

The results of the CANARY analysis on these data sets 
are presented in Figure 3-8 and Figure 3-9 for Locations 
A and B, respectively. Each of these figures shows the 

mean estimation residual (difference between the actual 
and predicted values) and the number of event clusters for 
each of the 25 parameter combinations. An event cluster 
is a continuous sequence of time steps which CANARY 
determines to be part of an event that is bounded on 
either end by periods of normal background water quality. 
Even though the available data are quite noisy, event 
clusters must be considered as false positives since no 
known adverse water quality events are present in these 
data. Several general trends occur in both figures. As the 
window length is increased, the mean prediction residual 
and the number of event clusters decreased for both 
monitoring stations. Also, for both stations, the changes 
in mean estimation error and number of event clusters 
are not a strong function of the threshold. The threshold 
could impact mean prediction error because time steps at 
which there are false alarms (residual is above threshold) 
are not used to predict future water quality values.

For Location A, the change in the mean prediction error is 
relatively small because both the window length and the 
threshold change. The maximum mean estimation error is 
0.27 and the maximum number of clusters of false positives 
is 54 and these clusters contain 673 time steps, or 2.4% of 
all time steps examined. Both of these occur when a window 
length of 360 time steps (12 hours) is used. At Location 
A, all of the mean estimation errors are considerably less 

Figure 3-7. Water quality data from four water quality sensors as recorded at 
Location B. The water quality signals are (a) free chlorine (Cl), (b) pH, (c) total 
organic carbon (TOC), and (d) specific conductivity (CDTY).
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than the thresholds used to identify outliers (0.6 through 
1.4). Therefore, the threshold value has little effect on 
the mean error of the estimated values (Figure 3-8a). For 
window lengths of 1080 time steps (1.5 days) or more, mean 
estimation errors are less than 0.15 standard deviations for all 
thresholds. This accuracy in water quality value estimation 
provides for relatively sensitive event detection at this 
monitoring station.

Figure 3-8b shows that for Location A, a window length of 
360 time steps (one-half of a day) is not adequate to reduce 
false positive results to an acceptable level. Additionally, 
a threshold value of 0.6 for any window length is too low 
to reduce the number of false positives. Window lengths 
of 1440 and 1800 time steps (2 and 2.5 days) result in zero 
false positives for any threshold value greater than 0.6. These 
results show that a number of different combinations of 
window length and threshold will result in zero false positive 
results at Location A for the time period examined.

Results at Location B are considerably different than 
Location A due to the higher variability of the background 
water quality data at Location B. Note the scale used for the 
vertical axes in Figure 3-9 and in Figure 3-8. The maximum 
average estimation error is 2.1 standard deviations. The 
maximum number of event clusters is 64, which contain 
1913 time steps, or 6.8% of all time steps examined. Both 
the maximum average estimation error and the maximum 
number of event clusters occur when a window length of 
360 time steps (12 hours) is used and therefore, this length is 
considered to be too short for use at Location B. At Location 
B it is not possible to reduce the number of false positive 
clusters to zero with these parameter settings. The minimum 
number of false positive clusters is 8 and this occurs when 
using a threshold value of 1.4 and a window length of 1440 
or 1800 time steps. The mean estimation errors are 0.21 and 
0.20 standard deviations respectively for these parameter 
combinations. 
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Figure 3-8. (a) Mean prediction error and (b) number of event clusters as a function of 
window size and threshold for Location A.

Figure 3-9. (a) Mean prediction error and (b) number of event clusters as a function of 
window size and threshold for Location B.
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The approach to parameter selection and examination of 
the mean estimation errors and the number of event clusters 
demonstrated here provides the basics of how parameters can 
be estimated using historical water quality data. Currently, 
this approach to parameter estimation is done with a different 
run of CANARY for each parameter set. Future versions of 
CANARY will allow for automatic parameter estimation 
using historical water quality data using an approach similar 
to that described here, but with minimal user intervention. 
The results shown here are consistent with results obtained at 
other monitoring stations and in other distribution networks 
in that at least one day of data must be contained in the 
history window to minimize the mean prediction error.

What Are the Input/Output Options for 
CANARY? 
Data can be input to CANARY through one of several 
formats:

• CSV files: SCADA data can be written to CSV (.csv) 
files that can be read directly by CANARY. Transfer of 
data using CSV formatted files is the most common path 
for using CANARY in offline mode to analyze historical 
data sets.

• Direct database connections: CANARY can connect 
directly to the SCADA database or through a third-party 
database connection tool such as EDDIES (U.S. EPA 
2009a). 

• XML files.

• Other software specific formats (for more information, 
see Chapter 4 of Hart et al. 2009). 

No inherent limits exist within CANARY to the maximum 
number of water quality signals at any one monitoring station 
or to the number of unique monitoring stations that can be 
analyzed simultaneously. However, as the size of the data 
streams increases, the processing time also increases. 

Outputs from CANARY can also be obtained in several 
formats:

• CSV files: CSV files that will be generated 
that include the following for each timestep: 
raw data output (for verification and capturing 
online values), estimation residuals, estimated 
probabilities of events, and event codes.

• HDF-5 formatted binary files.

• Database files: Connected SCADA databases will 
receive an event code, a probability of event, and an 
optional message with the name of the parameter(s) that 
could be responsible for causing the probability of an 
event to increase. 

• Software specific files. 

For more information about these output files, see Chapter 5 
of Hart et al. (2009).

How Can CANARY Connect to a SCADA 
System?
Most utilities collect, transmit, and store water quality data 
using a SCADA system. Typical elements are the connections 
to the sensors through dedicated phone or Ethernet lines and, 
in some cases, through radio communications, the central 
receiving station for this information, and a database for 
storage of all water quality records.

Several third-party packages are designed to serve as 
middleware between a SCADA system and CANARY. One 
of these is the EDDIES system developed by EPA’s Office of 
Water (U.S. EPA 2009a). This system acts as an intermediary 
between CANARY and SCADA, so that CANARY does not 
interact with the SCADA system directly. The information 
needed to connect CANARY to EDDIES is the same 
information needed to connect EDDIES to the database 
system. These third-party software interfaces are desirable 
when the utility maintains the SCADA database with a secure 
network and does not want to open that network to direct 
connections to EDS tools such as CANARY.

To directly connect to a database system, the user must 
have the proper Java™ JDBC™ Connector for the database 
software. This is typically available for no cost online from 
the database vendor. The Internet address for the database, as 
well as log-in credentials, will be needed to connect with the 
SCADA system database. Once the database is connected, 
the user will need to know:

• the database table where monitor values are stored

• the format of the table (are SCADA tags stored in a 
particular field or are the field names the same as the 
SCADA tags?)

• the names of the SCADA tags that are to be monitored 
at a given site

Due to timing issues, retrieving real-time data can be 
difficult. It is necessary to make sure that all data associated 
with a given time step are available to be read by CANARY. 
If CANARY is accessing the database at the same time the 
data are being written to the database from the SCADA 
system, there can be problems with the data transfer. To 
resolve this problem, it is advisable to set the clock slightly 
slow (a minute at most) compared to the database server, or 
ensure that CANARY is selecting data on, for example, the 
even minutes, while the database is being updated on odd 
minutes. Avoiding this data transfer problem is one benefit 
of using a middleware package like EDDIES, where the 
package handles the timing and timing messages rather than 
the system clock.
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4.
Event Detection Algorithms

Several algorithms for predicting water quality values have 
been developed and implemented within CANARY. Detailed 
descriptions of these algorithms are provided in this section. 
The residual time series resulting from the application of 
these algorithms are classified using a threshold comparison 
approach that takes into account the relative variability in 
the background water quality signal. The outcomes of the 
residual classification over multiple consecutive time steps 
are combined to provide a probability of an event at each 
time step using a binomial event discriminator (BED).

State Estimation Models
Three different state estimation models are implemented 
in the prediction algorithms and described in this chapter: 
time series increments, a linear filter, and a multivariate 
nearest neighbor algorithm. The linear filter and multivariate 
nearest neighbor algorithms have proven to be the most 
effective and, beyond the brief introduction below, the time 
series increments algorithm is not discussed further in this 
document.

Time Series Increments
The time series increments model is an implicit estimation 
model where the prediction of the value of a water quality 
parameter at the next time step, ẑ(t + 1), is simply the value 
measured at the previous time step, z(t):
 ẑ(t + 1)=z(t) (4-1)

where t is time. Time series increments depend on only the 
single previous measurement and, thus, fit the definition of 
a Markov model (see Taylor et al. 1998). The time series 
increments, δ(t), are defined as the difference between the 
estimated and measured water quality parameter value at the 
next time step:

 δ(t + 1) = ẑ(t + 1) − z(t + 1) = z(t) − z(t +1) (4-2)

These differences are calculated on standardized data (mean 
= 0 and standard deviation = 1) within a moving window of 
P previous measurements so that the units of the δ’s are also 
in units of standard deviation. The value of δ, then, is the 
number of standard deviations the estimated value is away 
from the predicted value. 

Linear Filter
The linear prediction-correction filter (LPCF) model uses a 
linear predictor to estimate the current value of a time series 
based on a weighted sum of past values. In its most general 
form, this approach is also known as an autoregressive (AR) 
model (Bras et al. 1993). The most common representation of 
the AR model is:

  ẑ(t + 1) = a1z(t) + a2z(t−1)+...+ aPz(t−P + 1) + δ(t +1) (4-3)

or more compactly:
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where ai are the estimation coefficients, P is the order 
of the estimation filter polynomial (number of previous 
measurements), and δ(t+1) is the estimation error. The error, 
or residual, generated by this estimate is

 δ(t + 1) = z(t + 1) − ẑ(t + 1) (4-5)

where a mean-zero Gaussian distribution defines δ. 
Several methods are available to estimate the values of the 
parameters a. In CANARY, the autocorrelation method of AR 
modeling is used for such estimation. This formulation is set 
up as a linear system:

 Za b (4-6)

where Z is a function of time. Expansion of this equation 
results in:
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Here for online operation, all entries in the linear system 
are updated at every time step and use only the most recent 
P observations such that Z has dimension of P. Updating 
at every time step allows the coefficients, a, to adapt to 
the changing water quality values contained in the moving 
window of previous values. To the extent possible within 
the AR model, non-stationarity and periodicity in the water 
quality data are captured by calculation of the appropriate 
coefficients at each time step. Note that this system of 
equations is solved separately for each water quality variable 
at each time step.

The solution that minimizes the estimation error through 
linear least squares is generally solved as:

 a = (ZT Z)-1 ZT b (4-7)

where Z T is the transpose of Z. The parameter estimation 
method exploits the fact that there is a direct correspondence 
between the parameters a and the correlation function of 
the water quality signals. Consequently, the Yule-Walker 
equations might be used to estimate the parameters by 
inverting such correspondence. Thus, the correlation 
coefficients, ρ, calculated from the P previous measurements 
provide a solution for the coefficients in a
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The subscripts in Equation 4-8 indicate the size of the lag 
spacing, in time steps, for which each correlation coefficient 
is calculated. Here the correlation coefficients are calculated 
in the frequency domain using an inverse and forward Fast 
Fourier Transform (FFT) on the previous P measurements 
of z. Since Equation 4-8 is a Toeplitz matrix, the use of 
Levinson-Durbin (LD) recursion provides the most efficient 
solution for a. Once a has been determined, it is inserted 
back into Equation 4-4 and the current value of the signal is 
estimated.

Examination of the autocorrelation structure for several water 
quality time series provides an intuitive feel for how the 
values of the coefficients will vary for different water quality 
signals and for different monitoring stations. Figure 4-1 
shows two example plots of the correlation coefficient as a 
function of the number of time steps between sample values. 
A total of 2900 data values were examined with a 5 minute 
sampling interval (288 time steps per day). For parameter 
1, the autocorrelation decreases linearly with increasing 

time between the samples. For parameter 2, periodicity in 
the water quality signal causes the correlation coefficient to 
decrease and increase with varying time lags between the 
sample data. For example, in Figure 4-1b, values separated 
by one day (288 time steps) are more strongly correlated than 
values separated by only 50-60 time steps.

Multivariate Nearest Neighbor
Another approach to state estimation that uses all water 
quality signals at each time step simultaneously to define 
the background state of the water quality is the multivariate 
nearest neighbor (MVNN) approach (see Klise et al. 2006a; 
Klise et al. 2006b).

For each time step, all J water quality signals are combined 
into a vector:

 [z j=1(t),z j=2(t),z j=3(t),...,z j=J(t)] = z J (t) (4-9)

The vector defines a point in the J-dimensional space at 
time t. If multivariate clustering is used to define K clusters, 
or classes, of water quality, the mean coordinate of the 
kth cluster in the J-dimensional space calculated over the 
previous P time steps is denoted by z̄ J

k (t − P,t). Figure 4-2 
shows a schematic example of this calculation in J=3 
dimensional space. The data in Figure 4-2a have been 
classified into five water quality classes and the extent of 
these classes are shown in Figure 4-2b. The distance between 
a new data point, red star in Figure 4-2b, and the centroid of 
each existing cluster is calculated as a Euclidean measure.

Figure 4-1. Example autocorrelation functions calculated for two different water 
quality parameters; (a) Parameter 1 and (b) Parameter 2.
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Figure 4-2. Example of data classification in three-dimensional space. The 
normalized data in (a) are classified into five clusters (b). A new data vector to be 
compared to the existing cluster centroids is shown by the red star in (b).

 

The MVNN approach does not provide an estimate of the 
water quality at a future time step. Instead, MVNN provides 
a measure of similarity of that sampled water quality with 
the P previously measured samples contained in the history 
window. The distance between the new water quality sample, 
zJ(t+1), and the closest of the previous P water quality 
samples is measured as the Euclidean distance between 
the samples within the J-dimensional space. The minimum 
distance between the points is retained as the distance, Δ, 
which is compared to the threshold:
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The Δ value can be calculated between the current water 
quality value and the mean locations of K previously 
defined clusters, or it can be calculated for every previous 
sample separately. Work by Klise and McKenna (2006b) 
demonstrated that as K was allowed to approach P, where 
each time step defined an individual cluster, event detection 
results improved. Contrary to the linear filter approach 
described above, the distance calculated with the MVNN 
is not a function of any individual water quality signal, 
but is a combined measure of the distance using all signals 
simultaneously.

Residual Classification
The residual (Equation 4-5) at each time step must be 
classified as either being consistent with background water 
quality or as an outlier. Comparison to a threshold that is a 
function of the standard deviation of the signal within the 
moving window allows for adaptive residual classification 
that is relative to the variation in the background water 
quality. Here the threshold is defined as the number of 
standard deviations away from the expected water quality 
value below which the estimated and measured water quality 
values are considered to be consistent with each other. The 
relative acceptable deviation from expected water quality is 
fixed to a specified number of standard deviations, although 
the absolute value of the threshold in raw units (e.g., ppm, 

NTU) can vary as background water quality values vary. 
As an example, a threshold value of 1.0 standard deviations 
applied to the chlorine signal might correspond to a threshold 
of 0.04 ppm during periods of relatively stable chlorine 
concentrations, or it might increase to 0.25 ppm throughout 
times of larger background water quality variation.

State estimation techniques that fuse all signals (e.g., the 
MVNN technique or approaches using cross-correlations 
between signals) generally result in a single estimate of the 
residual that is combined from all input signals. In the linear 
filter approach, independent state estimation results in a 
residual for each signal that must be combined, or “fused” in 
some way, to identify an outlier at that time step. The linear 
filter approach allows for determination of the specific sensor 
responsible for the outlier, whereas the sensor fusion within 
the MVNN approach does not. Residual classification using 
the maximum residual across all sensors makes it easy to 
record the sensor that is responsible for the outlier at each 
time step and this is the approach currently implemented in 
CANARY, e.g.,

  )1(max ...1 +∂= tjJj  (4-11)

Binomial Event Discriminator (BED)
Previous application of outlier detection algorithms has been 
focused on classification of the water quality measurement 
vector (e.g., pH, chlorine, and total organic carbon) at every 
time step as either an event or background. One result of this 
approach was the large number of false alarms that are tied to 
significant, but very short-term changes in the water quality, 
including significant decreases and increases in consecutive 
time steps most likely due to noise in the SCADA system. 
The BED was developed to integrate events over multiple 
consecutive time steps before declaring the sequence of 
time steps to be a true event, background water quality, or 
a change in the baseline of the background water quality 
(Figure 2-3). The BED works on the results of any event 
detection algorithm that produces a binary result (success/
failure) for every time step. The BED provides an additional 
filtering of the data after the LPCF or MVNN algorithms 
and decreases the impact of any one time step that provides 
unexpected data.
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The result of any outlier detection algorithm is 
conceptualized to define any time step with an outlier as 
a “failure” and any other with a residual consistent with 
background quality as a “success.” The binomial probability 
distribution gives the probability that r “failures” occur in n 
trials, when the expected probability of any one trial failing 
is p. The corresponding probability that any one trial will 
succeed is q = 1-p.

The probability that the water quality observed in the n 
trials is indicative of background water quality conditions is 
P(backgrd) = b(r;n,p) and is given by Equation 4-12. The 
complementary probability of an anomalous water quality 
event occurring within n trials is P(event) = 1.0 – b(r;n,p).
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In online analysis, the concern is that the number of failures 
within a specified time period increases towards the positive 
tail of the binomial distribution of failures. This relatively 
large number of failures would indicate a rather unlikely 
occurrence of anomalies coming from the background. 
To more efficiently identify such sequences of events, 
the cumulative distribution function (cdf) of the binomial 
distribution is used:
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where zc is the probability threshold value. Using the cdf 
function ensures that the probability of an event is increasing 
as the number of failures increases.

The binomial probability distribution describes the outcome 
of a Bernoulli process which must have the following 
properties (Walpole et al. 1989):

1) n repeated trials in the experiment.

2) Each trial can only have one of two outcomes: success 
or failure.

3) The probability of failure, p, remains constant from 
one trial to the next.

4) Repeated trials are independent of one another.

Each time step for which water quality data are available 
is considered a trial. A user-defined window length within 
CANARY, bed-window-TS, defines the number of repeated 
trials (the n time steps) that are input to the BED 

The outlier detection algorithms (time series increments, 
linear filter, or MVNN) are designed to produce a sequence 
of binary flags (0/1 indicating whether the data from the 
time step is an outlier or not) as output, which fits the 
requirement of a Bernoulli process having only success or 

failure outcomes.

The third requirement for a Bernoulli process is that the 
probability of failure, p, remains constant from one trial to 
the next. The use of a threshold that is relative to the current, 
or recent, variation of the water quality signals maintains a 
constant failure rate independent of the variation in the water 
quality. This approach also allows for a much more efficient 
detection algorithm than can be obtained using a constant 
threshold such as the “set point” approach often employed 
(see comparison in McKenna et al. 2006b).

The fourth property of the Bernoulli process that must be met 
for application of the BED is the most restrictive: repeated 
trials are independent of one another. This requirement is 
equivalent to stating that the values of the estimation error, 
ε, are uncorrelated in time. Autocorrelation of the estimation 
errors can occur when the estimation algorithm tends to 
create a smoothed version of the observed water quality such 
that over or under prediction of the measured water quality 
could occur in sequences of consecutive time steps. The 
simulation of varying amounts of autocorrelation in error 
series has been examined and caused deviations from the 
expected binomial behavior.

Operation of the estimation algorithms under ideal conditions 
would result in ε being uncorrelated Gaussian noise and, 
for any zc, the expected proportion of outliers could be 
determined from properties of the Gaussian distribution. 
This proportion corresponds to the probability of any single 
trial resulting in a failure, p, and could be used directly in the 
definition of the binomial parameters. However, experience 
has shown that serial correlation in the errors and other 
factors do not allow for this theoretical interpretation. In 
addition, experience at multiple testing stations has shown 
that by keeping p = 0.50 and altering both the size of the 
binomial window (bed-window-TS) and the probability 
threshold that must be exceeded to declare an event (event-
threshold-P), a wide range of event detection sensitivity can 
be achieved.

Within CANARY, a second window length, event-timeout-
TS, is defined as the number of consecutive time steps 
beyond the BED window, bed-window-TS, in which every 
time step must contain an outlier in order to identify a 
baseline change. The length of event-timeout-TS is not 
directly tied to the binomial probability distribution, but is set 
by the water quality analyst.

Testing Strategies
The central problem in fully evaluating EDS tools is that 
very few data sets exist where a contamination event that 
changed water quality is known to be recorded by sensors 
in the distribution network. Although it might be possible to 
find a few cases at different utilities where this has occurred, 
a database of such events that were large enough to develop 
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a statistically significant number of results does not exist. 
An alternative approach to EDS testing is to simulate water 
quality events on top of previously recorded water quality 
data at a utility. This type of simulation can be done with 
varying levels of sophistication: from simply adding a 
square wave that increases/decreases the measured water 
quality values by a set amount for a prescribed time period; 
to defining and solving the chemical reactions between an 
injected contaminant and any substances in the bulk water or 
on the pipe-walls.

An intermediate approach that superimposed the measured 
responses of sensors to actual contaminants injected into a 
pipe loop onto previously recorded water quality data was 
utilized. A Microsoft® Excel® software-based tool has been 
developed that uses internal Microsoft® Excel® functions and 
Visual Basic® programming to provide a convenient means 
of superimposing any sensor response onto water quality 
data observed within a water distribution network. The water 
quality sensor responses to injected contaminants as recorded 
by EPA in the National Homeland Security Research Center 
(NHSRC) Test and Evaluation (T&E) Facility are included 
in the event simulator program. Hall et al. (2007) provide 
additional details on the experimental program that recorded 
such responses. The event simulator program considers the 
sensor response to an injected contaminant to be a template 
for the change in that water quality parameter and then places 
this response on top of observed water quality as input by 
the user. The response on top of the water quality is repeated 
multiple times as requested by the user. For best results, the 
user can input measured sensor responses as recorded from 
experiments using water and pipe materials that are specific 
to the utility of interest.

Five steps are involved in the event simulation process within 
the Microsoft® Excel® software-based tool:

1) “Load Data.” The baseline water quality (WQ) data 
needs to be pasted into the columns of the InputData 
worksheet, in the order indicated by the column 
titles. Note that the order of the water quality variable 
columns must be kept the same as in the existing 
worksheet template. No blanks can exist in any column 
with data in it, as this will cause the calculation to stop 
at that point. If missing values need to be represented, 
use either “NaN” or “#VALUE!” instead of blanks. 
If the monitoring station does not have water quality 
data for all of the water quality sensors, those missing 
columns need to be filled with the missing value 
indicators.

2) “Create Pattern.” This step defines the portion of 
the water quality pattern and the spacing between 
events to be superimposed onto the recorded water 
quality data. This portion must be done manually with 
'Pattern Label' values of zero indicating no event, and 
pattern values other than zero indicating an event. 
Pattern values indicate the deviation from background 
water quality that results from the introduction of 
contaminant. Event time steps range from 1 (start of 
event) to 39 (end of event), where 39 is the maximum 

number of time steps in any experiment (Hall et al. 
2009). The event might be lengthened or shortened. 
The water quality value at step 20, the midpoint of the 
event, generally defines the maximum deflection of the 
sensor away from the background values. Repeating 
the value at step 20 will lengthen the event, which 
kept the shape of the pattern at the beginning and end 
of the event consistent with those measured. A default 
pattern that is 20 time steps long, followed by 80 zeros 
denoting background water quality after the event, is 
provided in the Pattern worksheet.

3) “Select Contaminant.” The event simulator 
program comes with a database of sensor responses 
as determined at EPA’s T&E facility. Instrument 
responses are currently available for 15 different 
contaminants. Each contaminant was run with three 
different injection strengths and, for each, two 
replicates were completed. Therefore, a total of 90 
(15 x 3 x 2) different experiments are available from 
which a pattern can be chosen. Some contaminants 
create a response only in one sensor, while others 
affect multiple sensors. In addition to the contaminant 
responses from the experiments, two additional 
synthetic patterns were added to the event simulation 
tool: the square wave and sawtooth (triangular) 
wave for both chlorine (Cl) and pH signals. Each 
synthetic wave applies to only a single sensor, and 
three different levels of maximum deflection can be 
chosen. Users of the event simulator are encouraged 
to add events from other experimental efforts to the 
event simulator database. Figure 4-3 shows example 
deflections in four sensors from the introduction of a 
2.2 ppm, 20 minute pulse of aldicarb (pesticide), 24.4 
meters upstream of the monitoring station.

4) “Create Events.” This is the calculation step where 
the selected contaminant response is superimposed 
onto the measured water quality data. The results are 
automatically pasted into the OutputData worksheet. 
These results contain a column of time step indices 
from 1 to n, where n is the total number of time steps, 
an event indicator column, where each time step is 
either a “0” for background or a “-1” for an event, and 
then one column for each of the modified water quality 
data.

5) “Save Data.” The last step is to save the created data 
set to an external file. For example, these data can 
be saved to a CSV file that can then be modified by 
adding the correct header names and used as input to 
CANARY.
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Figure 4-3. Example deflections of four water quality sensors from the introduction of 
a 2.2 ppm pulse of aldicarb, 24.4 meters upstream of the sensor station. The sensors 
are (a) free chlorine (Cl), (b) pH, (c) dissolved oxygen (DO), and (d) oxidation reduction 
potential (ORP).
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As an example of this process, the Cl squarewave with a 
deflection of -0.15 ppm is added to an existing water quality 
data set. The data prior to adding the events are shown in 
Figure 4-4 and the data set containing the events is shown in 
Figure 4-5. In this example, only the Cl data are affected: the 
pH and specific conductivity data are not changed. For this 
data set, the sampling interval is 5 minutes and each event is 
24 time steps (2 hours) long. The events are spaced 1000 time 
steps apart, which means that the start of each event is 83 
hours and 20 minutes after the start of the previous event. Ten 
events are visible in Figure 4-5.
The major advantage of the event simulator is that it is 
possible to superimpose the sensor responses of actual 
contamination events as recorded in a pipe loop onto water 

quality data collected within an operating water distribution 
network. These responses are most likely as close as possible 
to the actual responses of the sensors had that contaminant 
been injected into the distribution network. Each sensor 
response is discretized into 40 time steps and the shape and 
length of any sensor response can be varied by including or 
not including particular time steps of the response pattern. 
To make longer patterns representative of a longer injection 
period, central portions of the pattern can be repeated for 
as many time steps as necessary to extend the pattern to the 
desired length.
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Figure 4-4. Example water quality data prior to adding events. The water quality 
data are (a) free chlorine (Cl), (b) pH, and (c) specific conductivity (CDTY).
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Figure 4-5. Example water quality data with square wave deflections in the Cl 
signal added. The water quality data are (a) free chlorine (Cl), (b) pH, and (c) 
specific conductivity (CDTY). Red circle indicates one of the added events.

The main assumption in using the event simulator is that 
the responses of the sensors as recorded at EPA’s T&E 
facility would also be representative of the responses of 
the sensors when operating in the utility from which the 
water quality data were recorded. Background water quality 
at the utility might be different than that at EPA’s T&E 
facility, and this could cause the actual sensor deflections 
at the utility to be different from those recorded. Ideally, 
this assumption would be validated for each application 
at a different utility, but that would require injection 
of these contaminants into the network, which is not 
feasible. A way to address this problem might be to repeat 
the experiments performed by EPA at any utility using 
local water. Then, the sensor responses recorded in those 
experiments might be added to the event simulator database.

A secondary assumption is that the sensor response patterns 
measured at EPA’s T&E facility can be mapped onto the 
water quality time steps measured at the utility of interest. 
The experiments done at the T&E facility used a 1 minute 
sampling interval, whereas most utilities have a longer 
sampling interval, typically 5 minutes. It is possible to map 
only every fifth time step from the sensor response patterns 
onto the measured water quality data, but this will degrade 
the resolution of the water quality pattern. Another option is 
to assume that the time steps can be mapped one to one. For 
the typical longer sampling intervals at utilities, this results 
in slower changes in the sensor responses that should be 
consistent with a slower injection of the contaminant.
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5.
Canary Testing and Sensitivity Analysis

The performance of CANARY is particularly sensitive to two 
parameters: the window size and the threshold. This chapter 
provides a step-by-step example of how to select the values 
of these two parameters.

In what follows, both the linear prediction-correction 
filter (LPCF) and multivariate nearest neighbor (MVNN) 
prediction algorithms are used on data collected at three 
monitoring stations within an operating U.S. water 
distribution system. The stations were chosen because of 
their different water quality characteristics. Location A has a 
relatively stable background signal; Location B has similar 
characteristics to Location A, but with additional periodic 
variations; and Location C is strongly influenced by utility's 
operational changes.

The following water quality event detection issues are 
investigated:

1) Determination of appropriate event detection 
parameters from background data only (training).

2) Simulation of events with different contaminant 
concentrations for testing the detection capabilities of 
CANARY's algorithms.

3) Application of algorithms with parameters identified 
in training step for detection of events added to the 
background water quality data (testing).

4) Detailed examination of the events (false alarms and 
actual events) identified by the CANARY algorithms.

5) Evaluation of different parameterizations and the 
effects on event detection and baseline change 
identification (sensitivity analysis).

Available Data Sets
As mentioned above, the three monitoring stations are 
labeled “A,” “B,” and “C” and were selected to provide three 
distinctly different sets of water quality data for training 
and testing. For each monitoring station, there are 31 days 
(22,320 time steps at 2 minute intervals) of training data 
from July 8th through August 7th. Each station has four water 
quality signals: chlorine (Cl), pH, conductivity (CDTY), and 
total organic carbon (TOC). These training data are shown in 
Figure 5-1 through Figure 5-3.
The stability of the background water quality of Location A is 
noticed in the signals shown in Figure 5-1. The signals vary 
only gradually throughout the training data period with the 
exception of a sharp change in pH on July 11th and a sharp 
change in TOC on July 29th. Location B is another example 
of a monitoring station with a relatively stable background 
water quality (Figure 5-2). The signals of Location B also 
exhibit more regular daily periodicity relative to Location 
A (note that the water quality axis are different in Figures 
5-2 and 5-3 because the dynamics at each monitoring station 
are so different). As shown in Figure 5-3 the water quality 
at Location C is strongly impacted by utility operations. The 
strong daily periodicity in the chlorine, pH, and conductivity 
signals are caused by water from different sources passing 
the monitoring station each day.

The training data are used to identify the parameter settings 
in the event detection algorithms. These algorithms and 
parameters are then applied to a second set of testing data. 
Water quality events of varying strengths are added to these 
testing data sets to evaluate the event detection algorithms. 
It is assumed throughout these steps that the characteristics 
of the background water quality do not change between the 
training and testing data sets.



30

 

C
l(

p
p

m
)

(a)

(b)

(c)

(d)

C
l(

p
p

m
)

(a)

(b)

(c)

(d)

Figure 5-1. Training data for Location A. The four water quality signals used are (a) chlorine 
(Cl), (b) pH, (c) conductivity (CDTY), and (d) total organic carbon (TOC). 

Figure 5-2. Training data for Location B. The four water quality signals used are (a) chlorine 
(Cl), (b) pH, (c) conductivity (CDTY), and (d) total organic carbon (TOC).
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Figure 5-3. Training data for Location C. The four water quality signals used are (a) chlorine 
(Cl), (b) pH, (c) conductivity (CDTY), and (d) total organic carbon (TOC). 
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Analysis Step 1: Window Size and 
Prediction Errors
The first step in setting CANARY’s algorithm parameters at 
a specific monitoring station is to determine the value of the 
window size. This moving window defines the number of 
previous time steps that are used to predict the water quality 
value at the next time step (LPCF algorithm) or to compare 
against the water quality value at the next time step (MVNN 
algorithm). The values in the window are normalized (mean 
of zero and standard deviation of one) prior to any analysis 
within CANARY. The best window size is determined by 
using the LPCF and MVNN algorithms on a training data set 
to predict each future water quality value. The quality of the 
predictions is defined by the average absolute value of the 
residual between the observed and predicted water quality 
values and the standard deviations of these residuals. These 
two performance measures are calculated as a function of the 
window size. For this case study, ten different window sizes 
ranging from 180 time steps (6 hours) to 1800 time steps 
(2.5 days) are examined. The results of these calculations are 
shown in Figures 5-4 and 5-5. The parameters controlling 
the integration of results across time steps using the BED 
algorithm are held constant across all testing runs. These 
parameters are set such that 14 outliers within 18 consecutive 
time steps (18 trials) are necessary before an event can be 
identified. These parameters were determined through testing 
on historical data.

For both algorithms, all stations and water quality signals 
show a general decrease in the performance measures with 
increasing window size. The exceptions to this observation 
are the standard deviation of the TOC and CDTY signals 
for Location B. These results are attributed to the variation 
in these signals at early times in the training data sets. 
All results show that the variation in the accuracy of the 
predictions across the different signals at one monitoring 
station is of the same order of magnitude as the variation 
in accuracy across all three monitoring stations. This result 
is remarkable given the strong increases in the variation 
of the water quality signals from Location A to B to C and 
demonstrates how the prediction algorithms in CANARY 
are able to adapt to different water quality characteristics at 
different monitoring stations.

Lower values of the average absolute residual and the 
standard deviation of the residuals indicate increased 
accuracy and precision, respectively, in the predictions 
of future water quality values. An obvious choice for the 
window size would be the one that produces the lowest 
values of the performance measures. In this case, the largest 
window size (1800 time steps) performs best across all 
stations, water quality signals, and algorithms (as shown 
in Figure 5-4 and Figure 5-5). Statistical testing showed 
that the changes in the performance measures from one 
window size to the next were significant at all window sizes, 
indicating that even larger window sizes would continue 
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to reduce these performance measures. The drawback of 
increased window sizes is the longer computational time 
needed to update the parameters and predict the future water 
quality at each time step. Experience with other monitoring 
stations and other water utilities have shown that window 
sizes between one and two days are enough to provide 
reasonably accurate and useful predictions of future water 
quality values.

The results for the LPCF algorithm shown in Figure 5-4 
indicate that a window size of at least 1200 time steps is 

needed to reduce the standard deviation of the residuals 
to near their final minimum value. Therefore, for the 
LPCF, a window size of 1440 (2 days) is selected. The 
results for the MVNN algorithm in Figure 5-5 generally 
show the same shape, but have lower values than those 
for the corresponding LPCF calculations. Based on the 
similar shapes of the curves, a window size of 1440 
time steps is also used for the MVNN algorithm.

Figure 5-4. (a) Average deviation and (b) standard deviation of the prediction errors as a 
function of the window size for Locations A, B, and C from top to bottom, respectively. These 
results are from the LPCF algorithm.
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 Figure 5-5. (a) Average deviation and (b) standard deviation of the prediction errors as a 
function of the window size for Locations A, B, and C from top to bottom, respectively. These 
results are from the MVNN algorithm. The scale of the Y-axes are held constant with those in 
Figure 5-4.

Analysis Step 2: Threshold Value and 
False Alarms
In addition to setting the window size, the event detection 
algorithms also require a threshold value to classify residuals 
as being indicative of either background or outlier water 
quality. The authors have determined that a useful rule 
of thumb for setting the minimum practical threshold is 
typically given by:

 threshmin = ε + 2σε (5-1)

where ε and σε are the maximum values of the mean 
and standard deviation of the residuals across all signals 
analyzed.

The LPCF algorithm, with a window size of 1440 time 
steps, produces a mean deviation of approximately 0.10 
and a maximum standard deviation of 0.20 to 0.25 across 
the four signals analyzed. The exception to this observation 
is Location B, which has higher standard deviation values 
as discussed previously. Based on the rule of thumb and 
the results across the multiple window sizes, the minimum 
threshold tested here is 0.60. A total of six threshold values 

are tested with increments of 0.10, such that the maximum 
threshold is 1.10. The MVNN algorithm results show 
generally lower mean deviations of approximately 0.05 
and slightly lower standard deviations of less than 0.20 as 
compared to the LPCF results. For consistency, the series 
of threshold values evaluated are held constant for both the 
MVNN results and the LPCF results.

Both the LPCF and MVNN algorithms are used on the 
training data set for the range of thresholds from 0.60 to 1.10. 
The EDS results were examined qualitatively to determine 
the best threshold value. Threshold values that resulted in 
event declaration on obvious significant changes in water 
quality and minimized events and outliers throughout the 
rest of the data set were chosen. The thresholds selected for 
use on the testing data are shown in Table 5-1. Even though 
there are no known water quality events in the training data 
sets, alarms from CANARY are expected. These alarms are 
due to significant changes in the background water quality 
that occur at most monitoring stations. Examples are in the 
training data (Figure 5-1 through Figure 5-3): the sharp 
drop in TOC on July 28th (7/28 in Figure 5-1) or July 29th 
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at Location A, the drop in conductivity at Location B on 
July 17th, and the drop in TOC on July 9th followed by the 
increase in TOC on July 29th at Location C. 

The results of running CANARY on the training data sets 
using the final selected parameters are shown for each 
station and each algorithm in Table 5-2. Four different 
measures are used to summarize these results: the total 
number of events identified by CANARY (i.e., the number 
of alarms produced); the proportion of all time steps that 
are identified as events; the average event length; and the 
average probability of an event P(event), for those time steps 
classified as background (non-event) water quality. The BED 
parameters used here are the same as in Step 1 and limit the 
maximum length of an event to 45 time steps.

The results in Table 5-2 show that for Locations A and B, 
1.2 to 1.7% of the time steps are classified as events. At 
Location C, the estimated events make up 2.0 to 2.3% of all 
time steps. For a given monitoring station, the results from 
the two different algorithms are approximately the same. The 
average probability of an event outside of the areas classified 
as events ranges from 0.016 to 0.029 with the highest value 
occurring at Location C. These values are well below the 
probability threshold of 0.995 and indicate that outside of the 
events identified, the chances of a false alarm are very low.

Analysis Step 3: Simulation of 
Water Quality Events
A separate set of testing data is available for each monitoring 
station from August 8th through September 18th (29,606 
time steps, or approximately 41 days). Simulated water 
quality events are added to these testing data sets. Here the 
contaminant simulator spreadsheet was not used. Instead, 
simulated events were designed to represent changes in water 
quality that would be observed from the introduction of a 
small amount of a contaminant into the distribution network. 
The simulated events change the background water quality 

by adding a deviation to that background:

 ZE (t) = Z0 (t) + Eind (t) · e · Emax · σz (5-2)

where ZE (t) is the event modified water quality value at 
time t, Z0 (t) is the original background water quality at the 
same time step, Eind is an event indicator equal to zero at 
all time steps outside of an event or between zero and one 
during an event, e defines a decrease (-1.0) or increase (1.0) 
in the water quality signal in response to the contamination 
event, and Emax is a coefficient applied to σz, the standard 
deviation of the water quality sensor data. An Eind value 
of 1.0 indicates that the contaminant concentration is at 
full strength and the maximum change in the water quality 
sensors is occurring. Values of Eind less than 1.0 indicate time 
steps within an event at which the contaminant concentration 
is less than full strength, such as at each end of the event 
where the effects of dispersion in the pipe have created 
transitional concentrations of the contaminant between zero 
and the maximum concentration. The maximum deviation of 
ZE (t)) from Z0 (t) is plus or minus the quantity (Emax)(σz).

The initial shape of the simulated contaminant pulse is 
a square wave. Inclusion of the Eind term in the event 
simulation allows for the shape of the leading and 
trailing edges of the contaminant pulse to be modified to 
represent varying amounts of smoothing that occur due 
to dispersion and diffusion of the pulse within the pipe 
network. As an example, Figure 5-6 shows the values of 
Eind, fraction of the event strength, as a function of the 
time step within the contaminant pulse. Both ends of the 
original square wave of the injected pulse (Figure 5-6) 
have been smoothed. The example in Figure 5-6 has 
four time steps on each end of the pulse where the 
concentration is intermediate between the background (0.0) 
and the maximum strength of the event (1.0). The shape 
of the transition from background to maximum strength 
is modeled using a Gaussian cumulative distribution 
function and the total event length in is 34 time steps.

Table 5-2. CANARY results on training data prior to addition of events.

Monitoring Station
Number of 

Events
Proportion of Time 
Steps within Events

Average Event Length 
(time steps)

Average P(event) 
Outside of Events

Location A, LPCF 7 0.014 39.7 0.016

Location A, MVNN 7 0.017 45.0 0.016

Location B, LPCF 9 0.014 31.9 0.021

Location B, MVNN 8 0.012 30.4 0.016

Location C, LPCF 14 0.020 29.4 0.021

Location C, MVNN 17 0.023 27.5 0.029

Table 5-1. Event detection parameters used in the analyses.

Monitoring Station Window threshold
Location A, LPCF 1440 0.90

Location A, MVNN 1440 1.10

Location B, LPCF 1440 1.00

Location B, MVNN 1440 1.10

Location C, LPCF 1440 1.10

Location C, MVNN 1440 1.10
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Figure 5-6. Use of the event indicator (Eind) to define the shape of the event. The dotted line 
represents the shape of the contaminant pulse as witnessed at the monitoring station. The 
shaded box represents the initial square pulse of the simulated contaminant.
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Figure 5-7. Example of the simulated response of the free chlorine sensor to the introduction 
of three contamination events. The blue lines indicate the original background sensor signal. 
The time between events is 40 hours.
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Figure 5-7 provides an example of the simulated change in 
the response of the free chlorine sensor due to the injection 
of a contaminant. The maximum deviation of the sensor 
response from the background reading in this example is 1.5 
times the standard deviation of the signal value (Emax = 1.5). 
This parameterization results in events which decrease the 
free chlorine concentrations by approximately 0.22 mg/L. 
The shape of the events is as defined in Figure 5-6. The 
spacing between events is 1200 time steps (40 hours).

Testing data sets were created by adding simulated events 
to experimental data. Hall et al. (2007; Table 3) showed that 
many contaminants decreased free chlorine and/or increased 
total organic carbon. For the majority of the contaminants 
tested, changes in pH and specific conductance were minimal.

For all testing data sets, the shape of the event is shown in 
Figure 5-6 with the characteristics that were described above. 

The effect of an event is to decrease the value measured by 
the Cl sensor and increase the value measured by the TOC 
sensor. The first event begins at time step 1501 and the 
subsequent events begin at intervals of 1200 time steps (40 
hours) from time step 1501. Twenty-four events are added to 
each testing data set.

As mentioned above, the size of the maximum deviation 
away from the background water quality signal for Cl and 
TOC is defined as Emax times the standard deviation of the 
observed water quality. The standard deviations of the Cl 
and TOC data for the three training data sets are given in 
Table 5-3. The corresponding maximum deviation in the 
background signal for each monitoring station and each Emax 
are given in Table 5-4 through Table 5-6.
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Table 5-3. Standard deviation of the Cl and TOC signals for the three monitoring stations.

Monitoring Station Cl (mg/L) TOC (mg/L)
Location A 0.1469 0.1635

Location B 0.1818 0.0724

Location C 0.1775 1.8776

Table 5-4. Maximum signal deviation for each event at Location A.

Max Event Strength (Emax) Max Cl Deviation (mg/L) Max TOC Deviation (mg/L)
0.50 0.073 0.082

0.75 0.110 0.123

1.00 0.147 0.164

1.25 0.184 0.204

1.50 0.220 0.245

1.75 0.257 0.286

2.00 0.294 0.327

2.25 0.331 0.368

2.50 0.367 0.409

2.75 0.404 0.450

3.00 0.441 0.491

Table 5-5. Maximum signal deviation for each event strength at Location B.

Max Event Strength (Emax) Max Cl Deviation (mg/L) Max TOC Deviation (mg/L)
0.50 0.091 0.036

0.75 0.136 0.054

1.00 0.182 0.072

1.25 0.227 0.091

1.50 0.273 0.109

1.75 0.318 0.127

2.00 0.364 0.145

2.25 0.409 0.163

2.50 0.455 0.181

2.75 0.500 0.199

3.00 0.545 0.217

Table 5-6. Maximum signal deviation for each event strength at Location C.

Max Event Strength (Emax) Max Cl Deviation (mg/L) Max TOC Deviation (mg/L)
0.50 0.089 0.939

0.75 0.133 1.408

1.00 0.178 1.878

1.25 0.222 2.347

1.50 0.266 2.816

1.75 0.311 3.286

2.00 0.355 3.755

2.25 0.399 4.225

2.50 0.444 4.694

2.75 0.488 5.163

3.00 0.533 5.633
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Across all three monitoring stations, the decreases in free 
Cl range from less than 0.1 mg/L to near 0.5 mg/L. The 
simultaneous increases in the TOC are less uniform due to 
the larger variation in the TOC standard deviation values 
across the three stations. The TOC increases range from less 
than 0.1 mg/L at Locations A and B to greater than 5.0 mg/L 
at Location C. The much larger changes in TOC during the 
events at Location C are due to the high standard deviation of 
the TOC signal at that monitoring station.

In addition to the calculations done with the simulated 
event sizes shown in Table 5-4 through Table 5-6, the 
three original data sets (unmodified) are also analyzed 
with CANARY. Analysis of the un-modified testing data 
sets corresponds to Emax = 0.0 and these results provide 
the baseline event detection results. Figure 5-8 through 
Figure 5-13 show the results of analyzing the unmodified 
testing data sets from all three sites using the LPCF and 
MVNN algorithms and as well as the time steps where 
CANARY identified water quality events for each signal (red 
dots in the figures).

A noticeable attribute of the three data sets is the loss of 
nearly 24 hours of data between September 14th and 15th 

(9/14 and 9/15 in Figure 5-8 through Figure 5-13), which is 
easily noticeable in the figures below. During the periods of 
data loss, CANARY waits for the data to be available again 
and then continues to process the new data using the previous 
data left in the window prior to the data loss. Any significant 
change in the values of the signals from one side of the data 
loss to the other will cause an event. This scenario causes 
both algorithms to sound an alarm at all three stations at the 
end of the data loss.

In addition to periods with missing data, CANARY ignores 
those in which the sensor is offline. Such periods are 
identified by CANARY through sensor hardware alarms, 
which are not shown in the figures below. In particular, 
Location A and Location B have TOC sensor hardware 
alarms indicating that the TOC sensor is offline. At Location 
A, this occurs from September 13th to 14th (9/13 to 9/14 in 
Figure 5-8 and Figure 5-9) (about 3.3% of the data). At 
Location B, the TOC sensor hardware alarm is on for part of 
September 10th (9/10 in Figure 5-10 and Figure 5-11) and 
then from late on September 10th through the end of the data 
set (greater than 18% of the testing data). No specific TOC 
sensor hardware alarms occur in the data for Location C, 
although the pattern of missing data is a bit more complex 
and there is a period of sensor recalibration earlier in the 
data set, during the morning of August 13th (8/13 in Figure 
5-12 and Figure 5-13). Throughout periods of TOC sensor 
hardware alarms at Locations A and B, CANARY will 
continue processing and using the other three water quality 
signals to detect events. Because the simulated events only 
alter the Cl and TOC signals, during the periods of TOC 
sensor hardware alarms, CANARY will only be able to 
detect events on the basis of the changes in the Cl signal. The 
impacts of sensor hardware alarms on the CANARY results 
will be strongest at Location B.

In addition to the loss of data and the TOC sensor hardware 
alarms, there also appear to be some issues with the pH and 
CDTY signals at Locations A and B. These signals seem not 
to change at all beginning on September 9th or 10th (9/9 or 
9/10 in Figure 5-8 through Figure 5-11) up until the loss of 
data. These signals have no alarms during this period, but this 
behavior is unusual in water quality monitoring data.
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Figure 5-8. LPCF event detection results for the Location A testing data - no events added. 
The two images show the (a) first and (b) second halves of the data set.
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Figure 5-9. MVNN event detection results for the Location A testing data - no events added. 
The two images show the (a) first and (b) second halves of the data set.
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Figure 5-10. LPCF event detection results for the Location B testing data - no events added. 
The two images show the (a) first and (b) second halves of the data set.
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Figure 5-11. MVNN event detection results for the Location B testing data - no events added. 
The two images show the (a) first and (b) second halves of the data set.
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Figure 5-12. LPCF event detection results for the Location C testing data - no events added. 
The two images show the (a) first and (b) second halves of the data set.

 

(a)

(b)

(a)

(b)



43

Figure 5-13. MVNN event detection results for the Location C testing data - no events added. 
The two images show the (a) first and (b) second halves of the data set.
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(b)

(a)

(b)
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Table 5-7. CANARY results on testing data prior to addition of events.

Monitoring Station Number of Events
Proportion of Time 
Steps within Events

Average Event Length 
(time steps)

Average P(event) 
Outside of Events

Location A, LPCF 5 0.033 37.8 0.009

Location A, MVNN 12 0.040 29.9 0.018

Location B, LPCF 7 0.035 32.9 0.011

Location B, MVNN 16 0.049 37.5 0.025

Location C, LPCF 15 0.048 37.3 0.025

Location C, MVNN 16 0.049 35.9 0.024

The results of running CANARY on the testing data sets 
with no events added are summarized in Table 5-7. The 
performance measures in Table 5-7 are the same used on the 
training data set as shown in Table 5-2. Across all monitoring 
stations and algorithms, approximately 3 to 5% of the time 
steps are classified as events by CANARY. These results 
are indicative of the fairly sensitive parameter settings and 
at least double the proportion of the time steps classified as 
events in the training data. Such increase might indicate a 
change in the nature of the water quality signals between the 
training and testing data.

Analysis Step 4: Event Detection Results
Several different measures are employed to evaluate the 
performance of the event detection algorithms on the 
testing data sets. The known times of the simulated events 
are considered to be the “true” events, whereas the times 
identified by CANARY are called the “estimated” events. 
The performance measures are:

1) The area under the receiver operating characteristic 
(ROC) curve;

2) The proportion of true events for which there is at least 
one CANARY detection;

3) The proportion of the total time of the true events that 
overlap with the estimated events;

4) The average delay in the time of detection from the 
beginning of the true event;

5) The average length of the estimated events compared 
to the same measures for the true events.

The ROC curve has been widely used in evaluating 
decisions made in medical and engineering applications, 
including evaluating water quality event detection algorithms 
(McKenna et al. 2008). The ROC curve defines the tradeoff 
between missed detections (MD) and false positive decisions 
in a single curve. The two axes of the ROC curve are defined 
by the false alarm rate (FAR): 

 FAR = P + TN (5-3)

and the probability of detection (PD):

 PD = 1 - MD = TP + FN (5-4)

where TP and TN are the true positives and true negatives, 
respectively, as defined by the extent of the simulated 

event, and FP and FN are the false positives and the false 
negatives (blue and red boxes in Figure 3-5). An FP occurs 
when CANARY estimates an event when no true event 
has occurred at the same time. An FN occurs when a true 
event remains undetected by CANARY. A TP occurs when 
CANARY estimates an event and a true event occurred at the 
same time. A TN occurs when CANARY does not estimate an 
event and there is no true event at that time.

The ROC curve provides a single plot that demonstrates 
the tradeoff between FAR and PD across all ranges of 
the probability of an event, P(event). Typically, as the 
sensitivity of the algorithm is increased, the level of PD 
increases, but this also results in increased FP’s. The 
area under the ROC curve varies from 0.5, indicating 
the decision results are only as good as those created by 
random guesses, to one, which indicates perfect decision 
making – the case of PD = 1 and FAR = 0. The ROC 
curve area is used here as a performance measure.

The results of the ROC curve calculations are summarized 
by the area under the ROC curve for each monitoring station 
and algorithm (Figure 5-14a). The areas under the ROC 
curves increase from approximately 0.5 to 0.7, at an event 
strength of 0.5, to above 0.8, at event strengths greater 
than 1.5. Beyond the event strength of 1.5, the ROC curve 
areas are nearly constant. Some level of variation exists in 
the ROC curve areas across the three stations and the two 
different algorithms. This variation is greatest at the smallest 
event strength (0.5), where the MVNN algorithm provides 
significantly better performance than the LPCF algorithm 
at Locations A and B. At event strengths greater than 1.5, 
the highest ROC curve areas (0.875) occur at Location C 
when using the LPCF algorithm and the lowest areas (0.8) 
occur at Location B when using the MVNN algorithm. The 
reason for Location C having the highest ROC curve areas 
is most likely due to the large absolute event strengths for 
TOC at that monitoring station (Table 5-6). These are due to 
the large standard deviation of the TOC data at Location C 
(Table 5-3).

The ROC curve analysis is accomplished by evaluating the 
decision result at each individual time step. This approach 
can be misleading as the parameters in CANARY are set 
to identify water quality events composed of groups of 
consecutive time steps where the water quality is anomalous. 
In particular, the settings of the BED algorithm used here 
require that at least 14 time steps be classified as outliers 

FP

TP



45

before an event can be identified. This intentional delay 
in the event identification works to reduce the number of 
false positive alarms, but also creates a large number of 
time steps where the true event is already occurring prior 
to CANARY identifying it. These time steps are considered 
as missed detections (false negatives). This delay in the 
event identification and the associated — relatively large — 
number of time steps considered to be false negatives leads to 
a characteristic shape in the ROC curve.

Figure 5-15 provides an example ROC curve as simulated 
using data for Location A. The most noticeable feature is the 
strong change in slope of the curve at the PD value (Y-axis) 
of approximately 0.69. This change in slope is caused by the 
delay in detection. No matter what threshold is applied to the 
probability of event values from CANARY, the first 14 time 
steps, at least, of every true event cannot be detected due to 
the delay built into the BED algorithm. Therefore, the ROC 
curve cannot rise any higher along the Y-axis. This delay 
mechanism limits the ability of CANARY to increase the 
probability of detection. The impact of changing the BED 
parameters on the ROC curve areas and the delay in the time 
to detection is evaluated further in the sensitivity analysis 
section of this chapter.

In addition to the ROC curve analysis, another evaluation 
approach is to consider each water quality event as an 
individual entity and determine the proportion of these events 
during which CANARY displays an alarm for at least one 
time step. This approach considers the resolution of the event 
to be the entire duration of the event and, therefore, is a less 
precise measure of the detection capabilities of CANARY. 
However, from a practical perspective, the bottom line for 
event detection is whether or not the events are detected at 
all, and this evaluation answers that question. For all signal 
strengths evaluated, the proportion of events that contain at 
least one time step of an alarm are evaluated and shown in 
Figure 5-14b.

When the event strength is 1.5 or larger, the proportion of 
detected events is greater than 0.85 for all monitoring stations 
and all algorithms. For the majority of the monitoring stations 
and event strengths, the LPCF algorithm performs better than 
the MVNN algorithm by detecting one or two more of the 24 
true events, a 0.04 or 0.08 increase in the proportion detected, 
for each event strength. The best performance occurs at 
Location B where the LPCF algorithm is able to detect 23 of 
the 24 events (Proportion Detected = 0.96) for event strengths 
of 1.5 and greater.

Results of the other performance measures: proportion of 
overlap, average delay, and average event length, are all 
consistent with the results discussed above showing that 
CANARY is able to identify the majority of events when 
the strength is 1.5 or larger. To summarize these results, 
CANARY displays an alarm, on average, for about 40% of 
the time steps associated with each event. This corresponds 
to alarms for approximately 14 of the 34 time steps in each 
of the true events. For Location C, the average overlap 
proportion increases to approximately 50% (i.e., 17 out of 
34 time steps) at the higher signal strengths. The average 
delay between the start of the true event and the first alarm 
from CANARY is 16 to 17 time steps depending on the 
monitoring station and the algorithm. This delay is consistent 
with the settings of the BED parameters that require a delay 
of 14 time steps before alarming. Additionally, several more 
time steps of delay are needed to account for CANARY not 
recognizing the first two or three time steps of each event 
that have transitional concentrations between the background 
and the full strength. The average event lengths identified by 
CANARY are 26 to 27 time steps compared to the 34 time 
steps of the true events. This result shows that not only is 
there a delay in the CANARY detections of 16 to 17 time 
steps, but that the CANARY detections continue beyond the 
end of the true events by approximately 10 time steps.
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Figure 5-14. (a) Areas under the ROC curves and (b) proportions of true events with at least 
one detection as a function of the event strength in terms of standard deviation (σ).
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Figure 5-15. Example ROC curve showing the characteristic shape caused by a large delay 
in the detection of the true events. This calculation was done on the Location A testing data 
using the MVNN algorithm with simulated events of strength = 3.

Analysis Step 5: Sensitivity Analysis
The BED was proposed as a means of gathering evidence 
of an anomalous period of water quality across several 
consecutive time steps (McKenna et al. 2007), but at this 
time the performance of the BED still has not been rigorously 
evaluated. The key parameters of the BED algorithm are 
the number of trials in each binomial probability calculation 
and the probability threshold compared to the probability 
of an event, P(event). In CANARY, such parameters are 
defined as bed-window-TS (shown as the “binomial window” 
in the figures below) and event-threshold-P, respectively. 
The bed-window-TS parameter is evaluated to determine 
its impact on the previously described EDS performance 
measures and also on the delay in detection of an event. Of 
particular focus is the question of whether or not changes 
in the parameterization of the BED can reduce the average 
delay time between the onset of an event and the detection 
of that event, while simultaneously increasing, or at least 
maintaining, the area under the ROC curve.

Calculation of P(event) through the binomial model and 
comparison to the probability threshold of 0.995 specifies 
that 14 outliers within 18 time steps are necessary in order 
to declare a water quality event. Here the same results 
are used to examine how the performance measures are 
affected by a decrease in the number of outliers needed 
for an event declaration. Changes to the number of 
trials in the binomial experiment are made to decrease 
the number of outliers necessary for identification of 
a water quality event. Thus, the value of bed-window-
TS is decreased from 18 to 6 in steps of two.

Figures 5-16 and 5-17 show the results of changing the 
value of bed-window-TS. Figures 5-16a and 5-17a show the 
detection delay as a function of the value of bed-window-
TS and the event strength. Figures 5-16b and 5-17b show 

the area under the ROC curve as a function of the same 
two parameters. Figure 5-16 shows results for all three 
monitoring stations obtained using the LPCF algorithm, 
and Figure 5-17 shows the same results for the MVNN 
algorithm. Several observations are clear from these figures:

• Decreasing the number of trials used in the BED 
decreases the detection delay in a near linear manner for 
all event strengths above 0.5 standard deviations. This 
behavior is expected, given that a larger number of trials 
increase the delay prior to being able to detect an event.

• The ROC curve area is not strongly dependent on the 
value of bed-window-TS. For most cases, decreasing 
the detection delay does not significantly change the 
area under the ROC curve. A strong exception to this 
observation occurs at Location B using the LPCF 
algorithm, since a bed-window-TS value of 18 results in 
a jump in the ROC curve area relative to smaller values 
of bed-window-TS. This jump is due to CANARY 
identifying 23 of the 24 true events when bed-window-
TS is set to 18 and only identifying 20 of the 24 true 
events when the bed-window-TS drops to 16 or less.

• The values of the ROC curve areas remain relatively 
stable as the detection delays decrease. Therefore, while 
such a decrease produces a decrease in the number 
of false negatives, it also produces an increase in the 
number of false positives. This relationship is further 
explored below.

• The detection delay results at Location C are 
significantly shorter than those at the other two 
monitoring stations. The large standard deviation 
of TOC data at Location C makes the absolute 
values of the simulated events quite large relative to 
background values, and these events are, therefore, 
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detected faster than events of similar strengths at 
the other two monitoring stations. The resulting 
detection delays of approximately four time steps 

indicate that CANARY is capable of identifying 
events at Location C during the transitional period 
from background to full contaminant strength.

Figure 5-16. (a) Detection delay and (b) ROC curve area results for the LPCF algorithm at all 
three monitoring stations.

 

(a) (b)(a) (b)



49

Figure 5-17. (a) Detection delay and (b) ROC curve area results for the MVNN algorithm at 
all three monitoring stations.

 

(a) (b)(a) (b)

Discussion
The event detection results presented show that the 
differences between the LPCF and MVNN algorithms  
are minimal. In theory, the MVNN algorithm should  
require a larger threshold to get the same results as the  
LPCF algorithm, based on the mechanism for calculating  
the threshold.

An example with two signals provides a simple basis for 
comparison: Cl and TOC. The normalized distance (residual) 
between the predicted and observed water quality for each 

signal is one. The LPCF algorithm will retain the maximum 
residual for comparison to the threshold. The MVNN 
algorithm will calculate the Euclidean distance between the 
current observation and the closest previous observation. If 
the predicted water quality value turns out to be one standard 
deviation for both the TOC and Cl values, the Euclidean 
distance will be the square-root of two or 1.41. For a 
threshold value between 1 and 1.4, only the LPCF algorithm 
will identify this time step as an outlier. The residual 
calculation differences also lead to a broader distribution 



50

Figure 5-18. Comparison of example ROC curves for 11 event strengths at Location A with a 
bed-window-TS value of 8; (a) from the LPCF algorithm and (b) from the MVNN algorithm.

of residual values from the MVNN algorithm, which is a 
combination of signals, than from the LPCF algorithm, which 
only selects a single maximum value at each step. These 
differences influence the shape of the ROC curves.

Examination of the actual ROC curves shows that the 
maximum PD is reached with a very low false alarm rate, 
less than 5%. In general, the LPCF algorithm results in 
lower false alarm rates and a sharper break in slope than the 
MVNN algorithm (Figure 5-18). Note the expanded scale 
on the x-axis in Figure 5-18. The relative sharpness of the 
break in the slope is due to the differences in the LPCF and 
MVNN algorithms discussed above. The wider distribution 
of residual values created by the MVNN algorithm relative 
to the LPCF algorithm leads to the smoothed change in slope 
displayed in Figure 5-18b.
A series of simple calculations using the properties of the 
simulated true events can provide additional understanding 
of the values in the ROC curves. For every 1200 time steps, 
34 are the true event and 1166 are background. Outside of the 
results at Location C, the minimum delay times calculated 
were near 11 time steps (Figures 5-16 and 5-17). If the 
estimated events have a delay of 11 time steps and there 
are no extra time steps estimated as events at the end of 
the event- no false positives - then: TP = (34-11) = 23, FN 
= 11, and PD = 23/(23+11) = 0.68. This value is near that 
of the break in slope for many of the ROC curves shown 
in Figure 5-18. A hypothetical decrease in the delay to 8 
time steps, increases the PD value to 26/(26+8) = 0.76. A 
drawback of considering every time step as an independent 
result when using the ROC curve as an evaluation tool is that 
the calculation is dependent on the length of the event. If 
the detection delay remains constant at 8 time steps and the 
length of the simulated events is simply made twice as long, 
68 time steps, the resulting PD value would be 60/(60+8) = 
0.88, a 16% improvement over the case of the shorter events.

Examination of the results calculated here show that false 
positives occur most commonly by overestimation of the 
length of the event. If a delay of 11 time steps is needed to 
identify each event and, at the end of each event, CANARY 
continues to estimate an event for ten time steps beyond 
the end of the true event, the FAR calculation is: FP = 
10, TN = (1166-10) = 1156, and FAR = 10/(10 + 1156) = 

0.0086. Again, this value is close to the break in slope in 
Figure 5-18.

This sensitivity analysis demonstrates that changes in the 
EDS parameterization can be completed to decrease detection 
times at the expense of a higher number of false positives. 
Operational reasons might exist to bias this tradeoff towards 
faster detection times and higher false positives, for example 
during a period of heightened security around a community 
event. The increased false alarm rate would most likely 
prohibit operating in this mode for extended periods of time.

Summary and Conclusions
Three monitoring stations were selected to provide data for 
testing of CANARY EDS. The water quality signals in these 
three data sets demonstrated varying levels of periodicity 
due to network operations. The three data sets were split into 
training and testing sets. The training data sets were used to 
determine the appropriate window and threshold parameters 
for CANARY using two different algorithms: LPCF and 
MVNN. Within CANARY, a window length of two days, 
1440 time steps, and threshold values of one standard 
deviation were used.

An event simulation approach was developed to create 
changes in water quality assuming the introduction of small 
amounts of potential contaminants. The basic shape of the 
contaminant pulse is a square wave and can be controlled to 
represent more or less smoothing of the leading and trailing 
edges of the pulse.

Several issues complicated testing of the event detection 
capabilities provided by CANARY. Some change in the 
nature of the water quality data appeared to exist between 
the training and testing data sets. This change roughly 
doubled the number of false positive events at all three 
monitoring stations between the training and testing data 
sets using the same parameters when no events were 
added to either data set. This change also challenged the 
underlying assumption that the training and testing data 
have the same statistical characteristics. The TOC testing 
data for Location C had a unique bimodal distribution 
where approximately one week of TOC data had values 
below 1.0 mg/L, athough the remainder of the data set 
was near 5.0 mg/L. This bimodal distribution caused 
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the TOC data set to have a large standard deviation and, 
therefore, large absolute values for the TOC events relative 
to the other signals and other monitoring stations.

Across all monitoring stations examined here, CANARY 
was able to detect more than 90% of the simulated events for 
event strengths greater than 1.5 standard deviations of the 
background water quality (a change of approximately 0.25 
mg/L in the Cl and TOC signals). Event detections remained 
at 80% or greater for event strengths between 1.0 and 1.5 
standard deviations (a change of 0.15 to 0.20 mg/L in Cl and 
TOC). These results are remarkable when considering that 
the daily changes in the background Cl were as much as 0.5 
mg/L at Locations B and C and daily changes in TOC were of 
a similar magnitude at Location C.

The delay between the onset of an actual event and the 
declaration of that event by CANARY is controlled by the 
BED algorithm. The BED algorithm can be considered a 

post-processor of the outliers determined by the LPCF or 
MVNN algorithms. The initial probability threshold and 
bed-window-TS values used in testing resulted in a minimum 
of 14 outliers before an event could be declared. Given the 
smoothed leading edge of the contamination events, this 
requirement generally meant that at least 18 outliers, or 36 
minutes, were needed prior to declaring an event. Changes 
in the BED parameter, bed-window-TS, reduced the average 
delay to as little as six time steps (12 minutes) while keeping 
the area under the ROC curve the same. This result means 
that the reduction of false positives created by the decreased 
delay to detection is offset by an increase in false positives 
at other points in the data set. These results provide some 
guidelines on how to handle CANARY’s settings based on 
the tradeoff between sensitivity in detection and generation of 
false positives.
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6.
Water Quality Pattern Matching

Deployment of EDS tools has shown that false positive 
alarms are often caused by routine changes in water quality 
due to the hydraulic operations of a utility. As an example, 
during a six-month period when two EDS tools were 
deployed at the Greater Cincinnati Water Works (GCWW), 
both tools frequently produced false alarms due to opening or 
closing of valves, draining of tanks, and changes in the status 
of pumps within the distribution system (Allgeier et al. 2008).

False positives caused by these types of regular operational 
events can be minimized in one of two ways: 1) locate 
monitoring stations in areas with stable water quality 
characteristics (far from the influence of tanks and pumps); or 
2) incorporate algorithmic approaches to reliably recognize 
changes in water quality due to hydraulic operations. The 
rest of this chapter focuses on the second option, since the 
purpose of this report is to discuss event detection and not 
sensor placement. For more information on sensor placement, 
refer to Murray et al. 2010.

One algorithmic approach for reducing false alarms caused 
by operational actions is to include more than water quality 
information as input to the EDS. The main difficulty with 
this approach is that changes in hydraulic operations often 
occur far away from monitoring stations. Therefore, it 
is difficult to predict which monitoring stations will be 
impacted, the lag time between the operational action and 
the resulting water quality change, and the exact strength 
of the change. Extensive knowledge and experience of the 
utility operations can be used to try to predict the relationship 
between operational and water quality changes, but this can 
be difficult, if not impossible, to quantify due to the almost 
limitless possible combinations of system configurations 
and operations. In addition, this approach is utility specific 
and not easily generalized across utilities. Because of these 
significant difficulties, a new approach is proposed that 
adapts a method called trajectory clustering in order to 
identify regular patterns in water quality changes.

Trajectory Clustering
Previous applications of multivariate clustering algorithms 
(see Chapter 4) cluster the actual water quality data 
values to fit within a finite number of water quality 
classes (e.g., Klise et al. 2006a; Klise et al. 2006b). 
However, for the purpose of event detection, one is most 
interested in knowing when the data changes from one 
classification (e.g., background) to another (e.g., event). 
Therefore, the focus is on classification of water quality 
changes into background or “other” categories.

One promising technique for identifying patterns within time 
series data is trajectory clustering (Gaffney 2004). In this 
technique, time series of data (i.e., trajectories) are clustered 
rather than considered to be discrete data points. Typical 

applications of multivariate clustering focus on classification 
of discrete points or vectors of data measured on different 
features and are not inherently designed to integrate multiple 
measurements made in series along a curve or trajectory 
(Xu et al. 2009). As an example, focused applications of 
trajectory clustering have been developed to help classify 
historical storm tracks (Camargo et al. 2007; Gaffney et al. 
2007). Storm track data are considered the prototypical data 
sets for trajectory clustering because they provide a series of 
latitude and longitude pairs that define the center of the storm 
at discrete time intervals.

Previous developments in trajectory clustering are expanded 
to increase the dimensionality of the trajectory clustering 
framework to examine the water quality within n-dimensional 
parameter space. Additionally, the clustering is placed into 
an online framework that constantly updates the current 
water quality pattern with new data and compares it to a 
previously defined pattern library. The proposed approach 
for reducing EDS false alarms consists of two key steps: 1) 
creation of a cluster library of events from historical data 
and 2) comparison of current water quality signals against 
entries within the library. The following sections detail 
those processes and provide several example calculations.

Creation and Clustering of Water Quality 
Template Libraries
The analysis of historical water quality data to create water 
quality template libraries is a multi-step process. The key 
steps in this process are:

1. Identification of water quality events in historical data;

2. Creation of a template library; 

3. Water quality change clustering;

4. Calculation of cluster statistics.

The clustering approach developed here provides a concise 
summary of common water quality patterns against which 
any new observed water quality pattern can be quickly 
compared.

Identification of Water Quality Events
The first step in creating water quality event template 
libraries is to identify the routine events associated with 
operational actions. To do so, the user first runs CANARY 
with established configuration parameters on a set of 
historical data to generate an event probability, PC (t), for 
each time step. The data set should be long enough to 
capture the pattern of interest many times: a conservative 
recommendation would be 30 times. CANARY compares the 
event probability, PC (t) (the same as P(event) from previous 
chapters), with the user-defined threshold probability, Pthresh. 
For the purposes of creating the template library, an event is 
defined as a continuous interval of time steps during which 
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Table 6-1. An illustrative example to describe how events are identified: two events, colored red, begin at time steps 
3 and 7.

Pthresh  0.5

PC(t) 0 0.2 0.6 0.8 0.1 0.2 0.6 0.8 1 1 1 0

PC(t) > Pthresh? N N Y Y N N Y Y Y Y Y N

Initiation of event? N N Y N N N Y N N N N N

Time Step 1 2 3 4 5 6 7 8 9 10 11 12

the event probability exceeds the threshold probability (PC (t) 
> Pthresh) and is identified with the first time step in this 
interval. Table 6-1 contains hypothetical data to illustrate this 
process.

Creation of the Template Libraries
For each event identified by CANARY in the dataset, 
CANARY removes any missing or bad data. The pattern 
matching capability of CANARY then fits a series of low 
order regression models on the remaining data1 using the 
MATLAB® (MathWorks 2008) function polyfit. For 
each water quality signal, time is considered the independent 
variable in the regression model. For a particular signal, 
a regression model is determined for the data points that 
immediately precede the initiation of an event. 

The orders of the regression models and the numbers of 
data points to which the models are fit must be specified. 
The orders and number of data points are constant 
across events. The regression coefficients for an event 
are stored in a matrix that is termed the template library. 
That is, the template library is an NE x OTotal matrix, 

where NE is the total number of events identified in the 
historical data and OTotal is the sum, over all of the water 
quality signals, of the orders of polynomial regression 
plus the number of signals considered (since a nth order 
polynomial has n+1 coefficients). Figure 6-1 contains 
a flow chart of how the template library is created.

For example, the authors typically use free chlorine, pH, 
and conductivity signals as input to CANARY. The authors’ 
empirical trials have determined that third- to fifth-order 
regression models typically work well when fitting 2290 
time steps prior to the detection of an event. If each signal is 
fit with a third-order polynomial, then the first four entries 
of a row in the template library row contain regression 
coefficients for free chlorine data, the fifth through eighth 
entries are regression coefficients for pH, and the last four 
row entries are regression coefficients for conductivity data. 
Thus, the template library would have twelve columns. Thus, 
the template library would have 12 columns for each event. 
These events are then clustered into water quality patterns.

1 For some signals, “2”s are removed from the regression data since Supervisory Control and Data Acquisition (SCADA) systems 
sometimes report powers of 2 for signals (e.g., pH) when there are SCADA errors.
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Water Quality Change Clustering
Following the creation of the template library, the water 
quality change events within the library are clustered. A 
trajectory clustering algorithm has been implemented in 
CANARY, because it is the pattern of water quality change, 
not the actual water quality values during the change, which 
must be identified. The algorithm simultaneously clusters the 
regression coefficients for all signals rather, than the actual 
data values corresponding to the events.

CANARY uses the fuzzy c-means (FCM) algorithm to 
cluster the regression coefficients. The FCM algorithm 
is an iterative clustering algorithm developed by Dunn 
(1973) and further refined by Bezdek (1981). It is a 
“soft” clustering algorithm that permits events (indicated 
by a small number of regression coefficients) to belong 
to multiple clusters and, thereby differs from a “hard” 
clustering technique, like the k-means algorithm 
(Hartigan et al. 1978), which assign events to a single 
cluster. For each event, the FCM algorithm calculates the 
degree to which each event belongs to each cluster.

The basis of the FCM algorithm is the minimization of the 
following objective function:

 
 
J = uij

m

j=1

NC

∑
i=1

NE

∑ xi − c j

2
, 1≤m< ∞ , (6-1)

where

• NE is the number of events being clustered;

• NC is the number of clusters;

• xi is the event that is being clustered;

• cj is the cluster center for the jth cluster;

•  uij is the degree of membership of xi to cluster j.
 Note 0 ≤ uij ≤ 1, and 
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• || || is a norm for measuring the distance of events from 
cluster centers; and

• m is a “fuzziness” parameter that can be adjusted to 
affect cluster membership. This parameter must be 
assigned a value greater than one, and larger values lead 
to more overlap of the clusters.

The FCM algorithm is an iterative algorithm, and it is 
composed of the following steps:

1. Initialize the cluster membership matrix U0, i.e., the 
matrix that contains uij.

2. At the kth step, calculate the cluster centers c kj using 
the cluster membership matrix U K in the following 
equation

 

 

c j
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(uij
k )mxi
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. (6-2)

3. Update the cluster membership matrix U K with the 
following equation

  
uij
k+1 =

1

xi − c j
k

xi − cp
k
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p=1

NC

∑
. (6-3)

4. Repeat steps 2 through 5 until ||U K − U K+1||U < ε or 
k > Nterm. The term ε is a positive constant used to 
establish convergence criteria for the FCM algorithm, 
and Nterm is a positive integer that establishes 
additional termination criteria. The notation || ||U is 
used to represent a matrix norm.

Since Dunn (1973) assigned m a value of 2 in the first 
presentation of the FCM, this convention is often still 
followed. The CANARY implementation of the FCM 
algorithm also follows this convention. Values for the other 
FCM parameter values are fixed within CANARY, and 
sensitivity analyses were conducted to determine the other 
parameter values. Table 6-2 lists parameter values that 
are assigned in CANARY’s implementation of the FCM 
algorithm.

Table 6-2. Fuzzy c-means clustering algorithm 
parameters in CANARY.

Parameter m ε Nterm || ||U
Value 2 0.1 100 || ||U for matrices

 
Several considerations had to be made when implementing 
the FCM algorithm in CANARY. The distance norm that was 
implemented is defined as follows:

 
 
v =

vi

σ i

 

 
 

 

 
 

i=1

l

∑
2

 (6-4)

where

• l is the length of the vector;

• vi denotes the ith element of the vector v; and

• σi denotes the standard deviation of all of the events’ ith 
regression coefficients that are being clustered.

Often, specific conductivity values are one to two 
orders of magnitude larger than the other water quality 
signals, and if the standard Euclidian distance is used 
to define the norm in the FCM algorithm, the clustering 
algorithm would more heavily weight the patterns in 
conductivity signals than patterns in the other signals. 
(The clustering methodology was tested on data in which 
free chlorine values typically ranged between 1-3 mg/L, 
pH values from 7 to 9, and conductivity values from 
90 to 120 and 170 to 200 μS/cm.) To avoid this problem, 
Equation 6-4 is used to equally weight the regression 
coefficients for all the signals that are clustered.

The FCM algorithm also requires an “initial guess” for 
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the degree of cluster memberships (U0 in Step 1 of the 
algorithm). It is common practice to assign random values 
to this matrix, but the efficiency of the algorithm can be 
sensitive to the initial guess. Thus, a different approach 
for assigning initial cluster membership values was 
implemented. The template library was initially clustered 
using MATLAB®’s (MathWorks 2008) hierarchical clustering 
function clusterdata. Hierarchical clustering is a “hard” 
clustering technique in which events are assigned to a single 
cluster. If an event was assigned to a particular cluster 
using the hierarchical clustering approach, the initial cluster 
membership degree for that event to the cluster was assigned 
a value of δ, and the degrees of membership for that event to 
all the other clusters were assigned a value equal to

  (1−δ)
(NC −1)

. (6-5)

That is,
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The parameter δ is assigned a value of 0.8 in CANARY’s 
FCM algorithm. This value was determined through trial 
and error.

Finally, the FCM algorithm requires that the analyst 
determine the number of clusters a priori. This can be 
difficult if the data are difficult to visualize or a large number 
of events are being clustered. At best, relying on the analyst’s 
judgment is a subjective process. Thus, CANARY uses the 
clustering index developed by Pakhira, Bandyopadhyay, and 
Maulik (PBM) (Pakhira et al. 2004) to determine the optimal 
number of clusters. This index, termed the PBM-index, is 
defined as follows:

 
 
PBM(NC ) =

1
NC

×
E 1

E NC

× DNC

 

 
  

 

 
   (6-7)

where E represents the cluster membership weighted norm of 
the distance between the data within an event and the center 
of an existing cluster. The E1/ENC term in the PBM-index is 
the sum of all intra-cluster distances for the full data set if 
there was only a single “super cluster” over the sum of all 
distances for the multi-cluster system (Pakhira, et al., 2004). 
All that is needed for the PBM calculation is the value of E 
for the case of a single cluster, E1, and the sum of E over all 
NC clusters, ENC.
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  DNC
=max ci − c j  (6-10)

Note that c1 is used to define the single “super cluster” for 
calculation of E1 and otherwise xi, cj, uij, and || || are defined 
in the same manner as they were in the FCM algorithm.

Pakhira et al. (2004) assert that the positive integer that 
maximizes the PBM-index is optimal in the sense that 
it minimizes the number of clusters while increasing 
compactness and separation between clusters. Hence, 
CANARY assigns the parameter representing the number of 
clusters in the FCM algorithm to the integer value between 2 
and 10 (inclusive) that maximizes the PBM-index. The upper 
bound on the number of clusters is arbitrarily set to 10 since 
most examples that have been analyzed optimize the PBM-
index with three to six clusters.

Calculating Cluster Statistics
In order to perform real-time comparison of water quality 
events with an existing template library, it is necessary 
to calculate cluster statistics. The events in the clusters 
are assumed to be normally distributed and the following 
equations are used to calculate the entries in the cluster 
means and covariance matrices, μj and COVj, respectively:
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COV j =
(uij )( xi −mj )( xi −mj )

T

i=1

NE

∑

uij
i=1

NE

∑

 (6-13)

The subscript j denotes the cluster number.

Comparison of Incoming Data With the 
Template Library
Creation and clustering of the template library is performed 
in an offline mode using historical data. Once the library 
is established, when CANARY is run in online mode, it 
monitors incoming data and compares it to patterns already 
contained in the template library. If a change in water quality 
is significantly different from the template library, then 
CANARY will alarm. This section describes the process that 
CANARY uses to compare the real-time signals with the 
template library.

In its online mode, data read by CANARY from SCADA 
will be processed to compute event probabilities. If such 
probabilities exceed the user-defined probability threshold, 
the software will perform polynomial regression fits to the 
same signals and number of time steps considered in the 
template library. This regression step must use all of the 
same parameters that were used to create the template library. 
The following calculations compare current regression 
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coefficients for each cluster to the mean and covariance of 
events in the pattern library:

 pj =1− χDOF
2[ ]−1(xRT −µ j )

T COV j
−1(xRT −µ j )     (6-14)

where xRT denotes the regression coefficients for the 
new event and [X 2DOF]-1 denotes the inverse cumulative 
distribution function (CDF) for the chi-squared distribution 
with degrees of freedom equal to the total number of 
regression coefficients. Under the assumption that the clusters 
follow multivariate normal distributions, the term pj denotes 
the percentile of each cluster’s distribution to which xRT 
corresponds. If the new event does not fall within a certain 
percentile of any cluster, then CANARY will detect an event. 
If any pj is less than the tolerance level, no new clusters 
are added to the template library. Rather, the regression 
coefficients corresponding to the new event are added to the 
library, and the FCM algorithm is re-run with on the entire 
supplemented library. Means and covariance matrices are 
then recalculated for each cluster.

Example Calculations
Several example calculations are provided to demonstrate 
application of the pattern matching capability within 
CANARY. The first example (Location A) employs a 
simulated pattern of daily changes in the water quality 
signals. The simulated values provide a repeatable pattern 
with precisely known characteristics and beginning and 
ending times. Simulated water quality events are also 
added to the observed data to evaluate event detection 

with recurring water quality patterns. The second example 
(Location B) considers data collected from the output of 
a water works within an operating network and allows for 
examination of the effects of plant production on influencing 
water quality patterns.

In both examples, the pattern library is constructed by 
analyzing approximately four months of data. The goal of 
the pattern library construction is to identify a large number 
of events that are potential members of a pattern. To achieve 
this goal, parameters for the event detection algorithm are set 
to be more sensitive than for a typical analysis. The length 
of the history window is set to be one-half of the typical 
window length and the residual threshold is set to be slightly 
lower than typically used in online event detection. For each 
event, a decision is then made to include it within the pattern 
clustering or not.

Example 1: Simulated Patterns
The Location A data set used for this example has three 
water quality parameters: free chlorine (Cl), pH, and 
specific conductivity (CDTY). The background water 
quality is relatively stable and strong recurring patterns 
were not observed. Simulated changes in the observed water 
quality values are added such that the Cl values decrease 
by approximately 0.25 mg/L and the pH and CDTY values 
increase by 0.5 and approximately 12 μ S/cm, respectively. 
This modification occurs for a four-hour period each day 
between 1:00 AM and 5:00 AM, after which the water quality 
values return to the actual measured values. The images of 
Figure 6-2 show the data with the simulated patterns. The 
daily, four-hour long changes in the water quality signals are 
obvious in the 10 days of data shown.
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Figure 6-2. Water quality data and example event detection results for Location A with 
simulated patterns; (a) without the pattern matching and (b) with the pattern matching 
activated. Red dots indicate water quality events identified by CANARY. 

 

(a)

(b)

(a)

(b)
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A training data set consisting of 105 days of the modified 
data from March 10th to June 20th was examined to construct 
the pattern library. The linear prediction-correction filter 
(LPCF) algorithm with a window of 144 time steps (12 
hours) and a threshold of 0.9 standard deviations was 
used. During this period, 121 events were identified by 
CANARY and these events were placed into three clusters. 
The polynomial fits to the events (grey lines), the mean 
polynomial fit for each cluster (black lines), and each water 
quality signal are shown in Figure 6-3. Water quality pattern 
3 (Figure 6-3, right column) has the largest number of events 
(89) and corresponds to the simulated pattern of decreased Cl 
and increased pH and CDTY. The two other patterns account 
for 32 of the 121 total patterns identified. Note that it is not 
just the value but also the shape of the event that determines 
its pattern membership.

The testing data set consists of 72 days of data from June 
20th to August 30th. These data were analyzed using the same 
parameters in the LPCF algorithm both with and without the 
pattern matching activated. Without the pattern matching, 
there were a total of 65 false alarms over the 72 day period. 
When the pattern matching was activated, the same data set 
produced only 14 alarms, a 79% reduction in the number of 
false alarms. Example results over a 10-day period are shown 
in Figure 6-2 for the case (a) without the pattern matching 
and (b) with the pattern matching activated.

The ability of the pattern matching approach, both to reduce 
false positives and still identify water quality events, is 
evaluated by simulating water quality events on top of 
the water quality data containing the simulated pattern 
changes. An example of these components is shown in 
Figure 6-4. The simulated events decrease Cl and pH 
while increasing CDTY. The perturbations of the water 
quality signals during the events are of a similar order as 
the changes in the water quality patterns. It is easiest to 
distinguish the events from the water quality changes by 
looking at the pH signal in Figure 6-4 where the water 
quality changes increase pH and the simulated events 
decrease pH. Each simulated event lasts for 1 hour (12 
time steps) and a new event begins every 300 time steps 
so that the events take place at different times of the day 
throughout the testing data set. The events can occur during 
the simulated change in water quality due to the pattern or 
they can occur during times of unmodified water quality.

The testing data are analyzed again with and without the 
pattern matching activated. The same patterns identified 
in the training data (Figure 6-3) are used in the pattern 
matching. Without pattern matching, there are 104 false 
alarms and 95% of the true events are detected. With pattern 
matching, there are 39 false alarms and 92% of the true 
events are detected. These results show that although use of 
the pattern matching approach can reduce the number of false 

Figure 6-3. Water quality patterns identified in the training data for Location A. Each grey 
line is the polynomial fit to the 90 time steps prior to a water quality event. The black lines 
are the mean polynomial fit for each water quality signal and each pattern.
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alarms by 62.5%, likewise it can decrease detection of true 
events by 3%. Comparison of event detection results with 
and without the pattern matching are shown in Figure 6-4. 

Note the water quality events are simulated as repeatable 
patterns, but they are not incorporated into the pattern library. 
Therefore, CANARY correctly detects them as real events.

Figure 6-4. Water quality data and example event detection results for Location A with 
simulated patterns and simulated events; (a) without the pattern matching and (b) with the 
pattern matching activated. Red dots indicate water quality alarms, which correspond to the 
simulated events detected by CANARY.

 

(a)

(b)

(a)

(b)
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Example 2: Treatment Plant Output
Data from Location B include the Cl, pH, and CDTY water 
quality signals, as well as the total output (flow) of the 
treatment plant in thousand cubic meters per day (TCMD). 
As in Example 1 (Simulated Patterns), the treatment plant 
output data were recorded with a 5 minute sample interval 
and are broken into two separate data sets for training and 
testing. The training data set is 121 days long (34,849 time 
steps) from January 1st through April 30th. The observed data 
in the training set are used directly for construction of the 
pattern library without any simulated patterns. The pattern 
library is constructed using two different approaches: 1) the 
three water quality signals and the total output (flow) are used 
for construction of the library; and 2) only the three water 
quality signals are used in construction of the pattern library.

The patterns constructed with the three water quality signals 
and the total flow values are shown in Figure 6-5. A total of 
155 water quality events are identified in the training data and 
classified into two distinct patterns. Figure 6-5 shows that 
the main differences between the patterns are in the Cl and 
flow values, while the pH and CDTY values are relatively 
flat for both patterns. In the case of Pattern 1, events are 
triggered by simultaneous decreases in Cl and flow, while in 
the case of Pattern 2, the onset of events occurs when there 
are slight increases in Cl and flow. Note that the changes in 
the water quality signals within the patterns are subtle with 
average changes in Cl on the order of 0.1 mg/L and changes 
in pH of approximately 0.1 to 0.2. These subtle changes are 
considered significant at this monitoring station, which is 
located at the outlet of the treatment plant.

A second pattern library is constructed from the training 
data using only the three water quality signals (Cl, TOC, and 
CDTY). The same 155 water quality events are identified, 

which is not surprising given that CANARY does not use 
operations data in event detection, only in the definition of 
the patterns after event detection. The number of resulting 
patterns (i.e., the number of clusters) increases from two, 
when flow was included, to eight, derived solely on the water 
quality data (Figure 6-6). Flow dominates the selection of 
patterns in Figure 6-5: one corresponds to flow decreasing 
(pattern 1) and one to flow increasing (pattern 2). When 
flow is removed from the analysis, the number of patterns 
increases, due to the more subtle water quality patterns not 
being overwhelmed in the clustering process by the more 
consistent flow data.

The testing data set is 61 days long and covers the period 
May 1st through June 30th (17,568 time steps). For this 
example, only the reduction in false positives (between the 
case in which no pattern library is used and the case that uses 
two pattern libraries described above) is examined; additional 
events are not added to the observed data. Single time steps 
are counted as individual false positives even though the 
majority of the events occurred in clusters of consecutive 
time steps. Without the pattern library engaged, CANARY 
identified 321 time steps as being anomalous compared to the 
background. With the pattern matching engaged, using either 
pattern library, CANARY identified 96 time steps as being 
anomalous. The pattern matching enabled a 70% reduction 
in the number of alarms. Results of an example 10 day 
period are shown in Figure 6-7 for the case of (a) no pattern 
matching, (b) pattern matching using the pattern library 
created with flow data, and (c) without flow data.
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Figure 6-5. Water quality patterns identified in the training data for Location B when flow is 
included in the pattern definition; (a) Cl results in mg/L, (b) pH results, (c) CDTY results in 
μS/cm, and (d) total flow in TCMD. Each grey line is the polynomial fit to the water quality 
or flow data for 90 time steps prior to a water quality event. The black lines are the mean 
polynomial fit for each water quality signal and each pattern.

 

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)
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Figure 6-7. Event detection results on 10 days of Location B testing data with (a) no 
pattern library, (b) the pattern library constructed with flow data, and (c) the pattern library 
constructed with only water quality data. Events are noted by red dots.

 

(a)

(b)

(c)

(a)

(b)

(c)
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In general, the two different pattern libraries created for 
Location B identified the water quality patterns and reduced 
the false positives by the same amount. Some differences are 
seen in Figure 6-7b, which shows an event near June 3rd that 
was not classified as a pattern using the library created with 
the flow data. The event was classified as a pattern when the 
library created without flow data was used (Figure 6-7c). 
The best approaches for integrating hydraulic data, such as 
flow, in combination with water quality data in this trajectory 
clustering method still need to be refined and additional 
experimentation is necessary.

Conclusions
Water quality patterns are not repeated exactly in 
distribution networks, but often at slightly different times 
of day and with slightly different expressions each time. 
These recurring patterns can create false alarms. Online 
application of trajectory clustering and use of a pattern 
library are proposed here as a means of recognizing water 
quality patterns and reducing false alarms. Application 
of this pattern recognition approach to two example 
problems demonstrates the ability to reduce false positive 
detections and still identify water quality events.

In the first example, three distinct patterns were identified 
that correspond to recognizable water quality changes in 
historical data. Using test data, CANARY was able to reduce 
the number of false positive detections from 65 to 14 (79%,  
compared to not using pattern matching); the reduction in 
false positive detections was 65% even if simulated water 
quality events were added on top of the data set. Detection of 
the simulated events for this data set was 92%.

The second example application demonstrates a case 
in which small variations in Cl of less than 0.2 mg/L or 
variations in pH of less than 0.3, over the course of several 
time steps, can trigger a water quality event. Pattern matching 
allows for the CANARY event detection algorithms to be 
set to this level of sensitivity while maintaining a reasonable 
number of false alarms. The false alarm reduction in this 
example was 70% compared to not using pattern matching 
and is consistent with reductions observed in the first 
example. Monitoring with this level of sensitivity might 
not be routinely necessary but can be implemented during 
times of heightened security. Additionally, as demonstrated 
here, monitoring at this level of sensitivity at the outlet of 

a treatment plant allows the rapid identification of subtle 
variations in treatment plant output. This capability opens 
the possibility of using CANARY output as feedback for 
improved treatment plant control and optimization during 
routine operations.

This work demonstrates an adaptation of trajectory 
clustering for online event monitoring and real-time pattern 
matching. This approach to pattern matching was specifically 
developed to be an extremely general approach to integrating 
multivariate water quality signals and other information 
into online identification of recurring patterns. In addition 
to water quality signals, any operations data signal such as 
tank levels, flow rates, pressure data, and valve settings can 
be used in the definition of the water quality patterns. These 
additional signals could even include a “time of day” signal 
to improve recognition of patterns that occur at similar times 
each day. Integration of these other data streams allows for 
tighter coupling between changes in network operations and 
resultant changes in water quality within the event detection 
framework  Integration of these additional data streams 
is generally applicable and does not rely on creation of 
complicated rule sets for use of these additional data streams. 

Additional testing and application of the trajectory clustering 
approach to pattern matching will identify improvements 
that can be made. Two current ideas for improvement are 
sequential comparison of water quality data to the pattern 
library and more efficient pattern library construction. The 
current implementation of pattern matching compares only 
the current water quality to patterns in the library at the 
time of event detection. Future extensions of the trajectory 
clustering approach will allow for comparison of the current 
water quality to the pattern library at multiple times both 
prior to and after the declaration of an event. This sequential 
comparison to patterns in the library will allow for increasing 
evidence for or against a pattern match to be developed 
through time. Construction of the pattern library currently 
requires the water quality analyst to examine several months 
of data and make a decision on every identified event during 
that period as to whether or not it should be included in the 
library. This approach is necessary for each change in the 
event detection parameters. A more efficient way of doing 
this would be to retain only the days containing events in 
which the analyst is interested in classifying rather than 
examining several months of data.
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7.
Distributed Network Fusion for Water Quality

If CANARY is running at multiple monitoring stations in 
a water distribution system, how can the separate outputs 
be interpreted at the same time, so as to improve event 
detection? This chapter presents an approach for fusing 
CANARY outputs from multiple monitoring stations. It 
should be noted that this is a current area of research and has 
not yet been implemented in CANARY.

The previous chapters of this document have focused on the 
detection of anomalous water quality at a single monitoring 
station that has one or more sensors, assuming that results 
obtained at one monitoring station are independent of results 
from other monitoring stations. This independent analysis 
approach is designed for situations where the size of the 
plume resulting from any contaminant injection is small 
relative to the spatial density of the sensors. In such cases, 
it is expected that any given contaminant plume would only 
intercept a single monitoring station. 

The concept of distributed detection, however, is based 
on the assumption that a typical contaminant plume 
will be detected by more than one monitoring station, 
and that the outputs of multiple monitoring stations 
can be combined to provide a network-wide indication 
of a water quality event. A way to combine the results 
from multiple monitoring stations together is needed 
in order to achieve distributed detection capability.

To the authors’ knowledge, no study has been completed 
on the typical number of monitoring stations necessary to 
detect a contamination incident. To some extent, this is not 
surprising because the number of sensors, the design of the 
sensor network, the location and duration of the contaminant 
injection, and the layout and demand patterns of the 
underlying distribution networks are all variable and make 
comparison of results difficult. 

The goal of this work is to use the topology of the water 
distribution network and a sensor fusion approach to combine 
multiple detected events together. Each monitoring station 
with sensors and associated event detection system (EDS) 
is referred to as a sensing-node, and a change in water 

quality detected by the EDS is called an event. The approach 
serves both to reduce the number of false alarms and missed 
detection errors, as well as to determine the injection location 
of the contaminant accurately. 

In detection, two types of errors are: false alarm (FA) errors 
and missed detection (MD) errors. FA errors occur when 
the change detection algorithm generates an alarm on a 
nonexistent event and MD errors occur when the change 
detection algorithm misses an actual event. The two errors 
are linked, so that decreasing one of the errors increases the 
other. If the FA errors are too numerous, then operations 
personnel will begin to mistrust the system, but if there are 
too many MDs, then the system becomes ineffective. The 
number of FA errors increase when more sensing-nodes, 
which determine the injection location and extent of the 
contaminant plume, are added. Suppose a single sensing-
node has one FA per day, then a network of 100 sensing-
nodes would have four FA errors per hour! This, of course, 
would be an unacceptably high rate in a working system.

Figure 7-1 shows a space-time cube for a water distribution 
system called Anycity with 100 nodes randomly selected 
as containing sensors. The width and depth dimensions 
of the cube show the spatial dimension with the water 
distribution network shown at the top and bottom of the cube. 
The time dimension is along the height of the cube with 
time increasing from bottom to top. The circles represent 
detections from a change detection algorithm operating on 
a simulated contamination event. The open circles show 
randomly generated FAs, assuming a sensor at every junction 
and a single sensing-node FA rate of once per day. The entire 
cube represents sensor activity over 25 hours. For one FA 
per day at each monitoring station, an average of 104 FAs is 
expected within the cube. Using EPANET (Rossman 2000), 
a tracer injected into the network is simulated. This tracer 
represents the contaminant and the solid circles show the 
detections of this tracer. In actuality, it is not known if the 
detections were real or FAs (solid or open circles). Using 
sensor fusion, the idea is to separate the real detections from 
the FAs and reduce the errors of the entire system.
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Figure 7-1. Space-time cube of Anycity with simulated sensors at every junction. The water 
distribution network is shown in the space dimensions (width and depth) and time is the 
height dimension from bottom to top. The circles represent detected events with open circles 
shown as false alarms and filled circles as correct detections.
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The location and time of an event is considered as a point 
resulting from a random space-time point process (Kulldorff 
1997). Clusters in space and time that are significantly 
different from background indicate a set of true detections, 
whereas a set of purely random events indicate false 
detections. Kulldorff’s scan statistic (Kulldorff 1997) is 
used to fuse the detections of the sensing-nodes in the 
distribution network (Figure 7-1) through the identification 
of statistically significant clusters of events in space and time. 
The location and size of the significant clusters indicates the 
location and the extent of the contamination. Scan tests count 
events within sliding windows over a multidimensional area 
A and use the counts contained within A to determine if there 
is a cluster of significant events. For a water distribution 
network, the space within which the event detection occurs 
is not continuous, but is defined by the topology of the 
distribution network. The proximity of any two sensing nodes 
is defined by the velocity of the pipe flows between them. 
The distribution network’s topology and a rough measure of 
flow velocity are used to define the space dimension.

To test the distributed detection algorithms, EPANET is used 
to simulate a city’s water distribution system. By combining 
EPANET’s simulation of the transport of a tracer and the 
performance models of the event detection algorithms, it is 
shown how multiple sensing-nodes can improve the event 
detection performance relative to the use of a single sensing-
node. How the distributed detection system’s performance 
changes with the number of sensing-nodes, and how well the 
scan test can determine the injection location and time of the 
contamination, is also demonstrated.

Related Work
Recent research on using water quality measurements to 
identify periods of anomalous water quality has focused 
on data obtained at a single monitoring station. Various 
algorithms have been applied to these data sets to extract 
anomalous signals from the often noisy water quality 
background (e.g., Cook et al. 2006; Jarrett et al. 2006; Kroll 
et al. 2006). Research at Sandia National Laboratories 
has involved development and testing of multiple, robust 
multivariate statistical algorithms (Klise et al. 2006a; Klise 
et al. 2006b; McKenna et al. 2007; McKenna et al. 2006b), 
which are embedded in the CANARY software (Hart et al. 
2007; Hart et al. 2009). The algorithms provide a means 
of automatically detecting changes in water quality sensor 
measurements by comparing the current measurements 
to their predicted values based on their previous history. 
Essentially, the algorithms create a current measurement 
vector from all the available sensors. This measurement 
vector is compared to a prediction vector based on previous 
sensor data (see Chapters 3 and 4).

The concepts of distributed detection, where sensor responses 
from multiple monitoring stations across a network are fused 
to provide a “network-wide” detection capability, have not 
been fully applied to water distribution networks. Initial work 
towards integrating responses from more than one monitoring 
station has recently been reported (O’Halloran et al. 2006; 
Yang et al. 2008). In both of these studies, the authors use 
water quality sensors at two monitoring stations to improve 
the water quality signal. One of the monitoring stations acts 
as a reference that allows for adaptive compensation at the 
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second station to account for variable time delays between 
the two sensors as well as calibration errors and background 
noise in the second (downstream) sensor. 

Approach and Implementation
As a hypothetical base case calculation, randomly placed 
sensor nodes in a network are considered. Each node is 
assumed to have perfect detection capability and work 
independently, which is the non-fusion approach. The 
hypergeometric distribution provides the probability of 
detection under these conditions. If m sensor nodes are 
randomly placed in a network of M junctions, then the 
probability of having at least x detections in a contaminant 
plume that has a size of X junctions is
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combinations of M things taken m at a time. The non-fusion 
approach uses the Anycity network (M = 396) and assumes a 
contaminant plume size of 20 nodes. In order to have a 0.99 

probability that one sensor is in the contaminant plume, 80 
sensors are needed (Figure 7-2). The sensors are assumed to 
be perfect and placed randomly throughout the network.

The Y-axis of Figure 7-2 is the complement of the fraction of 
missed detections that is often used as a performance measure 
in sensor optimization studies (e.g., Watson et al. 2004). The 
underlying assumptions of Equation 7-1 are that the sensors 
have perfect behavior (i.e., no FAs and no MDs), as is often 
assumed in sensor network design studies and that the sensors 
are randomly placed, which is in contrast to most network 
design studies that use some form of optimization to place 
the sensors to minimize public health or economic impacts.

In reality, sensors are not perfect, and for large numbers of 
imperfect sensors, there is the potential for a large increase in 
FAs, as discussed above. To remedy this problem, a modest 
increase in the number of sensing-nodes and a distributed 
fusion approach to combine results at multiple nodes to 
reduce the level of FA errors is proposed.

To combine detections from multiple sensing-nodes, 
Kulldorff’s scan statistic (Kulldorff 1997) is used. Kulldorff 
calls this set of sliding windows used to examine the 
multidimensional area, A, zones. Significance is determined 
by comparing the count value to a null distribution of counts 
that would be obtained from a random point process.

Figure 7-2. Probability of one, two, or three sensors detecting a plume with a size of 20 
junctions within a 396 junction network as a function of the total number of sensors 
deployed.
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One possible approach would test each possible cluster for 
significance. Each test would not necessarily be independent, 
since the clusters are overlapping and events in one cluster 
could appear in another cluster. The multiple-testing problem 
is also a concern. If enough tests are made, then it is more 
feasible to disprove the null hypothesis H0 (no significant 
clusters) and, thus, increase the FA error. Adjustments can be 
made to solve the multiple-testing problem, but these become 
too conservative, especially for dependent tests. 

Kulldorff avoids the multiple and dependent testing 
problem by clearly defining the alternative hypothesis 
H1. Kulldorff’s H1 constrains the search to at least one 
significant cluster in an area, A, of space-time. This in turn 
defines the null distribution H0 and, thus, the threshold for 
decision of a significant cluster. This threshold can be used 
as a conservative estimate for multiple clusters and/or over 
smaller areas, but never areas larger than A.

Although computationally intensive for estimating the 
null distribution, Kulldorff’s approach can handle multiple 
dimensions and overlapping zones of different sizes and 
shapes and directly determine the locations of the clusters. 
By using a likelihood ratio and a clearly defined alternative 
hypothesis, it avoids the multiple and dependent testing 
problem. It is also a unique test, making it unnecessary to 
perform a separate test for each cluster size and location. The 
binomial version of the test (Kulldorff et al. 1995) is used, 
and it is assumed that each sensing-node produces a yes/no or 
1/0 decision on the presence/absence of an event.

Kulldorff’s scan test is conditioned on the knowledge of 
the total number of events C. The geographic area and time 
interval of interest is needed to define A, as well as how the 
region is covered with the set of all zones Z. Kulldorff’s test 
has two hypotheses:

1. Null hypothesis H0: For all the zones, the probability 
of an event inside the zone, p, is the same as that 
outside the zone, q, i.e., p=q.

2. Alternative hypothesis H1: At least one zone has the 
probability of an event inside the zone being greater 
than the probability outside, i.e.,  qpZz >∈∃ | .

The likelihood function L(z,p,q) for the scan test is:

  )()()1()1(),,( zzzzzz cCnNcCcnc qqppqpzL −−−−− −−=  (7-2)

and represents the likelihood that the number of events 
inside zone z is cz and the number of events outside zone z is 
C − cz. N represents the total number of possible events in A 
and nz represents the number of possible events in z. Using 
Equation 7-2, the likelihood ratio becomes:
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where L0 indicates the value of the likelihood function under 
the null hypothesis and sup denotes the supremum of the set, 
or the minimum value in the set that is greater than or equal 
to every number in the set. Thus, the scan test uses the largest 
likelihood ratio to combine results from multiple zones. The 
scan test statistic λ is:
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In general, the distribution of λ has no simple analytical 
form. To determine the distribution of λ for the null 
hypothesis, Kulldorff suggests using Monte Carlo 
randomization. Since the test is conditioned on the number 
of cases C, random examples using p = C / N (sensing-node 
FA error estimate) can be generated and the scan test for each 
can be computed. As long as the number and performance 
of the sensing-nodes stays the same, then estimation of the 
null distribution can be accomplished offline and prior to 
application.

Implementation
To fuse information from multiple sensing-nodes in a water 
distribution system, Kulldorff’s scan test is used. Figure 7-3a 
shows a hypothetical time series for three sensing-nodes, 
which assumes sensing-nodes B and C are downstream from 
sensing-node A and that the sensing-node produces a 1/0 
decision for event and no event, respectively. In the figure, 
a dot with a stem represents a 1 and just a dot represents a 
0. For this problem, there are two dimensions: space and 
time. The network of pipes and junctions represents the 
space dimension. The space dimension is represented as a 
series of travel time connections between sensing-nodes. 
EPANET simulations are used to find the median value of 
the absolute value (i.e., no direction) of the flow velocity 
over a 24-hour period for each pipe in the network, and then 
these median values are used to compute an estimate for the 
travel time between any two nodes. The direction of the flow 
is not recorded or used, only the median time delay between 
nodes. The median of the absolute values of the simulated 
travel time over a 24-hour period is an acknowledged rough 
estimate of the actual travel time between nodes, which could 
be significantly shorter than 24 hours and also dependent on 
the time of day. In any practical application, the actual travel 
times will always be uncertain and the median value over a 
2 hour period is used to represent an estimated travel time.
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Figure 7-3. (a) Example hypothetical time series for three sensing-nodes A, B, and C. A dot 
with a stem represents a 1 or a detection and a dot with no stem represents a zero or no 
detection. (b) A 3 x 2 space-time template for a space-time cluster centered at node A.

Figure 7-4. The 3 x 2 template aligned with the time series in space and time at current time tc.

Figure 7-5. The 3 x 2 template aligned with the time series in space and time at a new time tc.

To search for clusters of detections, the zone sizes in space 
and time as s × τ are specified. Here s represents the size 
of the zone in space and s represents the size of the zone 
in time. The space size s represents the number of sensing-
nodes closest to and including the center of the zone (in units 
of travel times). For example, Figure 7-3b shows a template 
for a 3 x 2 space-time zone centered at node A. The number 
of adjacent boxes represents the zone size in time (τ = 2) and 
the number of sets represents the zone size in space (s = 3). 
The horizontal distance τAB represents the estimated travel 
time between nodes A and B and τAC represents the estimated 
travel time between nodes A and C. This zone template 
searches for clusters that have a contaminant injection at 
node A.

Figure 7-4 shows the 3 x 2 template aligned with the 
time series in space and time for the current time tc. The 
leading edge of the template is aligned with the current 
time for sensing-node C. The total number of detections in 
this template is one as seen at node A. This becomes cz in 
Equation 7-2. Even though an event was detected at node 
A, there is no correlating evidence at the other nodes, so the 
scan test would not find the single detection at node A to be a 
significant cluster for this space and time.

Figure 7-5 shows the template advancing to a new time 
in which six detections occur. If a significant cluster 
is assumed to be detected and the contaminant was 
introduced at time step ti, then the detection delay is 
given by tc – ti. The scan test zones are defined such 
that when a significant cluster is identified, the central 
node, node A in Figure 7-5, is the source node for that 
cluster. The distributed detection approach provides both 
event detection and injection location identification.

Since the actual size of the space-time cluster is unknown, 
multiple zone templates of different sizes need to be tested. 
The contaminant injection location is also unknown, so 
zone templates that assume an injection at the other sensing 
locations within the template need to be tested. At each 
point in space and time these zones are combined by taking 
the one that produces the largest scan test score (Equation 
7-4). Note, for τ > 1, counts in the zone template at one time 
could be used for counts for a zone template at neighboring 
times. Because of this overlapping in time and the different 
zone sizes, the random variables representing the counts 
are not independent. This dependence makes analytical 
determination of the null hypothesis difficult.
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Evaluation and Results
To evaluate this distributed fusion approach, an event 
simulator called DetectNet was built using MATLAB® 
(MathWorks 2008) and the EPANET developer’s toolkit 
(Rossman 1999). The objective of DetectNet is to simulate 
sensing-node detections from an algorithm like CANARY 
(Hart et al. 2007) in a water distribution system.

The heart of DetectNet is EPANET. EPANET takes a 
description of a water distribution system, including 
stochastic demands and a chemical tracer, and determines 
the concentration of the tracer throughout the network 
at different time steps. This tracer serves as a proxy for 
a contaminant introduced into the water distribution 
system. The parameters specified for the tracer are initial 
concentration, start time, and length of the tracer injection. 
DetectNet takes the tracer simulation results and produces 
a set of detections based on the performance characteristics 
of a suite of sensors and the associated event detection 
algorithm (e.g., CANARY). The performance characteristics 
of the imperfect sensors and EDS algorithms are combined 
and are based on FA and MD errors. A pseudo random 
number generator is used to add extra detections to the 
“ground truth” tracer simulation based on the FA error 
and remove detections based on MD errors. EPANET is 
also used to extract the network constraints for the sensor 
fusion algorithm. These constraints are the connectivity of 
the network and median travel times between junctions.

Figure 7-1 shows the Anycity network used for the 
simulation. The network has 396 junctions, 534 pipes, 2 
tanks, 4 valves, and no pumps. The simulation runs for 
24 hours with 1 minute time steps. For randomly selected 
junctions with zero base demand, a 30 minute tracer injection 
with a concentration of 50 mg/L is simulated. The tracer’s 
concentration decreases as it moves through the network and 
mixes with non-tracer water from other parts of the network. 
Assuming there is a sensor at a junction, if the concentration 
at that junction is greater than 5 mg/L (detection limit), then 
a possible true detection by the sensing-node is allowed, 
otherwise only false detections are allowed. Simulation runs 
that gave an average plume size, at concentrations above the 
detection limit, equivalent to a portion of the network that 
would contain 20 nodes are selected. 

For sensing-node performance, a 10 minute sample interval, 
a FA rate of 1/144 (once per day), and a 0.01 MD error are 
assumed. This FA error was selected as a plausible worst 
case performance that demonstrated the fusion algorithm’s 
abilities to identify a contaminant in background clutter. The 
FA error does not necessarily reflect current or projected 
sensor node performance. Kulldorff’s scan test is applied 
with varying numbers of sensor nodes whose locations 
were randomly selected. Sensors at 396 (all junctions), 200, 
150, 100, 50, and 20 sensing-nodes are investigated. Using 
Equation 7-1 and 20 sensing-nodes, very good results are 
not expected, since there is less than a 20% chance that at 
least two nodes will randomly be placed in the contaminant 
plume for the contaminant injection characteristics used 
here. For each set of sensing-nodes, 100 different days of 
background clutter data using the FA error rate are generated 
and the scan statistics for each time step and cluster location 
are computed. The exact location of the sensing-nodes does 
not change the null distribution, since the space dimension 
is based on the s closest nodes. For all sensor configurations, 
all combinations of clusters sizes of 1, 3, 6, and 12 in space 
combined with 1, 3, and 6 in time are used, except for the 
single cell case, s × τ = 1 x 1. These cluster sizes were chosen 
based on the size of the network and estimated median travel 
times between nodes. 

Using EPANET, the introduction of a contaminant at five 
different junctions is simulated. For each separate injection 
location, 100 one day simulations with different randomly 
selected sensing locations and different background FAs are 
generated. This gives a total of 500 different simulations 
used to evaluate the performance of the approach. Figure 7-6 
shows a portion of the Anycity network overlaid with 
sensing-node detections and significant clusters. A sensor 
at every junction is indicated by the black dots. Circles 
represent all the detections up to and including the time 
shown in lower left corner. Circles filled with white are 
true detections, and circles not filled (shows junction and 
links) represent FAs. The relatively high FA rate results in 
every sensor node experiencing at least one FA by the end 
of the simulation (see Figure 7-6b). In actuality, the truth 
of the detections is unknown, but this labeling makes it 
easy to see how the distributed detection is performing. The 
contamination is introduced at 12:00 AM.
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Figure 7-6. Example results for scan test with 396 sensors. Circles represent detections. 
Circles filled with white represent true detections and circles with no fill (show junctions and 
links) are false detections. The solid black line indicates the extent of the significant cluster 
at this time step. (a) First significant cluster detected. (b) Intersection of all significant scan 
clusters after 24 hours. 

In Figure 7-6a, the heavy black line shows the first 
significant cluster detected by the scan test at 12:40 AM. 
Thus, it took 40 minutes after the introduction of the 
contaminant to detect a significant cluster. Figure 7-6b shows 
the intersection of all the significant clusters for that day. The 
scan test accurately reflects the extent of the contamination 
plume, though it does include some FAs near the bottom. 
This is because any knowledge of the flow direction in any 

one link is not used. Note the actual contaminant did not 
spread significantly in the southerly direction.

Figure 7-7 shows the results for 100 sensing-nodes or 25% 
coverage for a scenario where two contaminant injection 
locations were used. Figure 7-7a shows that it takes 4.5 
hours to detect the plumes from both contaminant injections. 
Figure 7-7b shows the results after 24 hours.

Figure 7-7. Scan test results for 100 sensing-nodes and two contaminant injections. 
(a) Results when both injections are first detected. (b) Results after 24 hours.
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Figure 7-8 shows the operating characteristics for different 
numbers of sensors. A correct detection is identified if 
the scan test finds a significant cluster intersecting the 
contaminant plume. A false detection is identified if the scan 
test finds a significant cluster during a day of background 
clutter. The scan test has excellent performance until the 
number of sensors drops to 50 or below. At this point, 
the chances that at least two sensors will be within the 
contaminant plume start to drop rapidly. For more than 
50 sensors, the results are excellent considering the high 
numbers of individual sensing-node FAs. At 100 sensors, 
there are very low errors. Recall that 80 sensors are needed 
for the non-fusion single-detection approach, assuming 
perfect detection, to achieve 99% detection of plumes with 
a size of at least 20 junctions. Thus, given imperfect sensors 
with the FA and MD rates specified here, the distributed 
fusion approach requires a 25% increase in numbers of 
sensing-nodes relative to having perfect sensors in the non-
fusion approach.

Figure 7-9 shows histograms for the time to detection 
(hours) and distance to detection (number of links) for the 
500 simulated cases. These statistics are based on the time 
and location of the first significant cluster to be detected 
(assuming there is a detection). The threshold for distributed 
detection is selected to achieve one FA per 100 days. As 
expected, the time to detection and distance to detection 
increases as the number of sensors decrease. If there is a 
sensor at every node, then the contaminant is detected within 
one hour and the correct injection location is identified more 
than 50% of the time. For 100 sensors, those results increase 
to 3.5 hours and the injection location is estimated with a 
maximum error of two network links (pipes) away from the 
true injection location.

Figure 7-8. Operating characteristics for varying numbers of sensors.
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Figure 7-9. Detection statistics. (a) The time to detection (hours) for different numbers of 
sensors. (b) The distance to detection (links) in terms of network links. Both are based on the 
center of the first cluster to be detected.

Note that the time to detection histograms become bimodal as 
the number of sensors decrease. The authors hypothesize that 
as the number of sensors decreases, it is more likely that the 
first sensor to encounter the contaminant will be on the edge 
of a plume than the center, since the plume expands as time 
increases. Sensors in the plume center eventually detect the 
contaminant, but the delay to detection increases.

Conclusions and Future Work
This work has presented a new approach to integrate 
independent event detection results into a consistent 
network-wide event detection strategy. This approach is 
designed to use the binary output (event/non-event) of an 
EDS such as CANARY, along with basic information on 
the network connectivity to identify events that impact 
multiple monitoring stations within the network. Kulldorff’s 
scan test has been applied to the problem of detecting 
contamination using multiple sensors in a water distribution 
network. Kulldorff’s test identifies significant clusters in 
space and time and can distinguish between clusters of true 
events from random background alarms. As the number 
of sensors in the water distribution network increases, the 
chance of a FA increases too. This makes it difficult to 
separate false detections from true detections. The approach 
developed here is general enough to handle improvements in 
change detection algorithms, such as potential contaminant 
identification, and real-time estimation of flow rates and 
directions from the network model. In the example network 
studied, a 25% increase in sensing-nodes from the non-
fusion single-detection approach allows the perfect sensor 
assumption to be dropped and the distributed fusion results in 
very low error rates.

Currently, Monte Carlo simulation is used to estimate the 
null distribution. Re-estimation of this distribution is required 
if the number of sensors changes or the sensor performance 
characteristics change. Another approach would use a 
Bayesian scan test that would make more assumptions about 
the characteristics of the null distributions. The Bayesian 
approach would not require the time-consuming Monte 
Carlo techniques to estimate the null distribution. It is noted 
that, although time consuming, the current Monte Carlo 
calculation of the null distributions is done offline using 
the assumed FA rate prior to the detection data becoming 
available. This makes the distributed detection approach 
developed here capable of functioning in a real-time mode. 

Tracking the detections through the network and improving 
how to determine the extent of contamination is important 
for knowing how to respond to an event. Tracking involves 
determination of which clusters are associated at different 
time steps and which belong to different contaminant plumes. 

The distributed detection approach provides both event 
detection and injection location identification. In this 
present approach, the detections are projected back 
in time to determine the best estimate of the injection 
location and time. To improve determinations of the 
extent of contamination, the detections could also be 
projected forward in time. This would give more support 
to the detections at the edge of the plume and might 
guide the placement of portable sampling units to further 
identify and characterize the contamination event.
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Appendix A
Literature Review and Glossary

This literature review covers methods for analyzing offline 
and online data using what are called change point or 
event detection schemes. These topics have generated a 
considerable number of research publications in a diverse set 
of fields over the past 20 to 30 years. Only key developments 
and publications containing illustrative examples of 
those developments are included in this review. Specific 
applications of these methods to water quality monitoring are 
explored in more depth. 

The publications reviewed are considered from the 
perspective of a two stage approach to event detection. The 
first stage provides a prediction of a future water quality 
value. This prediction is most often based on previous water 
quality values and the process of making the prediction is 
referred to as state estimation. In the second stage of event 
detection, the prediction of the expected water quality value 
is compared to the observed water quality value as it becomes 
available. The difference between the prediction and the 
observation is termed the residual, and the residual is used 
to classify the water quality at that time step as either being 
expected (or representative of the background water quality) 
or anomalous. This second stage of residual classification 
determines whether or not the observed water quality is 
significantly different from the expected water quality. These 
two stages to event detection are further defined below and 
example publications for each step are examined. Finally, a 
glossary of terms is added to this literature review. 

General Approaches
Water quality data collected from online sensors in water 
distribution systems can be thought of as a time series – a 
sequence of data values collected over time. Similar to 
many time series, water quality data streams are typically 
recorded at a constant sampling rate (e.g., every 10 
minutes). The general problem of detecting anomalous 
behavior in time series data is a subject of research in a 
number of disparate fields, including tsunami detection, 
traffic accidents analysis, mechanical component failure, 
system fault detection, data mining, and network intrusion 
detection among others. This work can be categorized into 
two distinct approaches described here as “online” and 
“offline.” The online approaches receive data in discrete 
time steps ranging from milliseconds to minutes and provide 
a determination of the presence or absence of an anomalous 
reading immediately after the receipt of each new data point. 
Offline approaches generally require all data to have been 
collected, and a retrospective survey of the data is then 
completed to identify change points within the data set. 
The use of online and offline to describe event detection 
algorithms is not necessarily the same meaning as when 
these terms are used to describe Supervisory Control and 

Data Acquisition (SCADA) connections. Event detection 
system (EDS) tools can be run in online mode where they 
are connected to a SCADA system and receiving data 
and providing analyses in real-time. These same tools can 
be also be run in offline mode where historical data are 
analyzed as if they were coming to the EDS in real-time.

These approaches are considered below, in greater detail, in 
the section on event detection. Offline approaches are used 
to analyze previously collected, or historical, data and are 
often employed to identify the correct set of EDS parameters 
for use in subsequent online studies at the same monitoring 
station. An event is defined as a series of time steps in which 
the water quality is significantly different than would be 
expected based on background water quality states. The 
number of time steps containing anomalous water quality 
values required in order to be called an event can vary and 
depends on the specific application and the goals of the event 
detection study. 

Offline Change Point Detection
In contrast to the online approaches, a number of offline or 
“after the fact” approaches to analyzing time series data have 
also been developed. A significant amount of literature in this 
area exists and it is reviewed here only briefly. The majority 
of the offline approaches to identifying anomalous behavior 
are based on the detection of change points. Change points 
are defined as abrupt changes in the nature of a signal as 
generally indicated by statistical measures of that signal. As 
an example, the time at which there is a change in the source 
water supplying a monitoring station can be a change point 
for the water quality at that station. A sudden and significant 
shift in the average of a water quality value that is due to a 
change in network operations is called a baseline change.

Multiple approaches to change point detection are described 
in the literature. A change point is generally determined by 
fitting a statistical model to the data and identifying the time 
when parameterization of that model changes significantly. 
This is typically done offline and is often described as 
“retrospective segmentation” (Adams et al. 2007) in which 
the change points define the ends of the various segments 
(e.g., Tsihrintzis et al. 1995). Additionally, two separate 
models can be used to fit the data before and after the change 
point. Application of regression models to continuous data 
and Poisson models to discrete count data are common (See 
Raftery 1994 for a review). Conceptualizing the process 
generating the signal as a Markov process is another natural 
approach to change point detection. For these cases, the 
change points define the switch between model states and 
Markov models can be applied (e.g., Ge et al. 2000a). Some 
approaches require that the number of change points in 
the time series be known, or defined by the user, prior to 
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the analysis. Other techniques are less restrictive and will 
determine the necessary number of change points to fit the 
data to some specified tolerance.

In particular, change point detection has been an active 
area of research with diverse applications: for example, 
the annual rate of coal mining accidents (e.g., West et al. 
1997); highway traffic patterns (Ihler et al. 2006); and semi-
conductor manufacturing process control (Ge et al. 2000b). 
Some recent work has been done in the area of merging 
change point detection approaches with those of online event 
detection (Takeuchi et al. 2006).

The general approach to offline change point detection is to 
examine data from opposite sides of a proposed change point 
to determine if those two data sets are significantly different 
from each other. If they are, the point that separates the two 
data sets is a change point. For offline analyses, the full data 
set would already be recorded and is available for analysis. 
In the online world, only the data recorded up to the present 
time are available, and the goal is to identify the change 
point as close to the time at which it occurs as possible. This 
constraint of making a determination as near to real-time 
as possible limits the available number of measurements 
that occur after the change point to as low a number as 
possible. The goal of an efficient water quality EDS is to 
develop an online approach to water quality event detection 
that can warn analysts and system operators in real-time of 
unexpected water quality conditions. To meet this goal, the 
offline approaches discussed above are not viable.

Online Detection
A number of online (real-time) approaches to identifying 
anomalous observations in time series data have been 
developed for use in a variety of fields. Some of the 
fundamental tools and the basic approaches to online event 
detection are covered below, with example citations provided. 
The literature covering online event detection is vast. This 
review covers only a fraction of techniques that have been 
published, emphasizing fundamental techniques that have 
been incorporated into water quality EDS tools.

Control Charts
Perhaps the oldest approaches to online event detection are 
the Shewhart charts and Cumulative Sum (CUSUM) charts 
developed in the 1920s. These approaches were originally 
developed for quality control in manufacturing and industrial 
processes and are now used in a number of other applications 
as well.

The CUSUM chart shows the cumulative sum of differences 
between the measured values and the average value. These 
differences are calculated by subtracting the average from 
each value. Increases in the cumulative sum value indicate a 
time of values that are continuously above the average. The 
resulting CUSUM chart will have an upward slope during 
such a period of relatively high values. The opposite results 
hold for periods of relatively lower values.

Shewhart charts calculate a chosen statistic of the observed 
data (e.g., mean) using a moving window through time. 

Control limits are calculated for the value of the statistic and 
any values of the statistic that deviate beyond the confidence 
bounds are identified as outliers. The control limits may be 
calculated using the expected variation in the range of data 
values or using more common statistical tools based on an 
assumption of Gaussian variation in the calculated statistic.

The choice between applying a CUSUM versus a Shewhart 
chart depends on the nature of the process being monitored. 
In general, CUSUM charts are thought to be better at 
detecting small, yet sustained changes in the mean value of a 
process (NIST/SEMATECH 2008), whereas Shewhart charts 
are often better suited to incorporating knowledge of the 
operating conditions held by the analyst.

Applications of both CUSUM and Shewhart charts typically 
employ standard statistical approaches to determine the 
range of control or the confidence limits for the process. 
A limitation of these tools is that they generally rely on 
assumptions of stationary independent and identically 
distributed variables and typically invoke the Gaussian 
distribution to define these variables. Adaptations to these 
charts have been made to accommodate time series data with 
autocorrelation, non-Gaussian distributions, non-stationarity 
in the data, and various ways of calculating the control limits 
(see Lai 1995; Zhang 1997).

Water quality time series are inherently non-stationary. Both 
daily (diurnal) cycles and seasonal patterns are the cause 
of these non-stationarities. Additionally, short term (daily 
to weekly) and longer term (multiple week) trends in water 
quality data are caused by varying levels of control of water 
treatment, source water changes, and hydraulic operations 
within the utility along with drift in the water quality sensors. 
It might be possible to employ techniques that have been 
developed for stationary time series, such as Shewhart and 
CUSUM charts, but first it would be necessary to remove 
(detrend) the non-stationary aspects of the observed data. 
Therefore, a robust means of modeling the background 
variation in water quality is a necessary step in being able to 
separate that background from the water quality events. This 
modeling of the background variation is generally referred to 
as “state estimation” and is the first step in modeling of non-
stationary time series.

Two Step Approach to Event Detection
A common model for the online detection of changes in 
time series data incorporates two components that work 
in concert: 1) a state estimation model and 2) a residual 
classification algorithm. The state estimation model 
uses previous observations of one or more time series 
measurements to estimate future values of the process. These 
estimates could also be made by a physical process model 
(e.g., chemical reactions and solute transport within the pipe 
network). The residual classification algorithm then uses the 
differences between the predicted state and the observed state 
to determine whether or not the observed state represents an 
anomalous condition. This basic approach has been employed 
for detection of anomalous conditions in time series data 
in various fields including tsunami detection (Gower et al. 
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2006), component degradation in nuclear power plants (Yuan 
et al. 2005) and aging in computer software (Vaidyanathan et 
al. 2003).

State Estimation
Modeling of background water quality falls into the general 
time series modeling category of state estimation. The goal 
is to provide an accurate estimate of the unknown state and 
do this iteratively so that the state estimate is updated at 
every time step. The state estimate is most often quantified 
by parameter estimates in a statistical model of the time 
series. For each parameter in the model of the state, the best 
estimate of that parameter is provided and, depending on 
the complexity of the state estimation approach, a measure 
of uncertainty about the estimated parameter might also be 
determined.

A number of modern statistical and mathematical advances 
facilitate time series forecasting and have been applied to 
state estimation, including neural networks (e.g., Boznar 
et al. 1993), support vector machines (e.g., Müller et al. 
1999), and wavelets (e.g., Lueck et al. 2000). However, 
this literature review focuses on traditional techniques 
derived in the fields of signal processing and time series 
analysis. These approaches have proven effective in the 
development and application of water quality event detection 
tools. Additionally, drinking water quality time series are 
significantly less complex than time series data obtained from 
natural systems (e.g., Phoon et al. 2002; Yu et al. 2004), and 
can be modeled under assumptions of linear processes.

Traditional approaches to time series analysis provide data 
driven models based on the theory of time series analysis 
as defined by Box and Jenkins (1976). These approaches 
include the popular autoregressive (AR) and moving 
average (MA) models as well as the various hybrids of 
these approaches (ARMA) and autoregressive integrated 
moving average (ARIMA). These models use observed data 
to estimate the parameters of the models and then use these 
estimated parameters to predict the expected data values 
at future observation times. These models are designed to 
provide a measure of uncertainty on the resulting predicted 
value of the time series. In essence, the time series models 
can be thought of as a filtering process where the noise in 
the underlying physical processes and in the measurements 
is filtered out to leave the best estimate of the water quality. 
Linear filters as used in signal processing can be built 
from AR and MA models. A thorough treatment of these 
approaches is given in Bras and Rodriguez-Iturbe (1993). 
These models are heavily used in signal processing, surface 
water hydrology, and econometrics applications and have 
also been adapted to estimate spatially correlated properties 
in 2 and 3 dimensions (see Goovaerts 1997; Journel et al. 
1978). Traditional application of these models considers the 
estimated parameters as point estimates with no uncertainty, 
although Bayesian approaches to time series modeling can 
incorporate parameter uncertainty into these models.

The many variations of Kalman filters represent the next 
level of complexity in state estimation. Kalman filters are 
currently popular for data assimilation where observed data 

can be used to iteratively update parameters of physical 
process models, as well as estimate future observations 
of the process. Kalman filters incorporate uncertainty in 
the underlying model and/or its parameters along with 
uncertainty in the observed data in predictions of future 
values of the time series. Original development of the 
Kalman filter (Kalman 1960) was focused on state estimation 
for linear systems with assumed Gaussian errors, model and 
observation, and covariance structures. The extended and 
ensemble Kalman filters (EKF and EnKF, respectively) were 
motivated by both the need to solve more highly non-linear 
problems and the inadequacy of the KF for solving these 
problems (Evensen 1992, 1994). In particular, the EnKF 
replaces the analytical calculation of covariances for both 
the model error and observational error and the assumptions 
necessary for those calculations with a numerical 
approximation where the covariance terms are calculated 
across a stochastic ensemble of model states and resulting 
model predictions (see Evensen 2003; Moradkhani et al. 
2005b).

A known disadvantage of the EnKF approach is that it has 
been developed for models with non-linear relationships 
between inputs and outputs, but it relies on a linear 
updating process. Additionally, the probabilistic approach to 
uncertainty estimation, for all variants of the Kalman filter 
is only valid up to second order (i.e., the output of any KF 
is a mean estimate and a variance defining uncertainty about 
that estimate, but no shape to the uncertainty distribution 
is provided). The second-order basis of the uncertainty 
estimation for the predictions essentially limits the validity of 
the KF approach to distributions that are at least symmetric, 
if not moderately Gaussian. For state estimation problems 
where uncertainty estimates that take into account higher-
order moments of the predictive distribution are needed, 
particle filtering techniques (see Arulampalam et al. 2002; 
Gordon et al. 1993; Moradkhani et al. 2005a) provide the 
next level of uncertainty quantification along with additional 
complexity in applications.

The time series models and the Kalman filter approaches 
to state estimation employ some optimal weighting of 
previous measurements to predict the future state of the 
water quality. Another decidedly simpler approach to state 
estimation is to use just a single previous water quality 
measurement as the state estimate. Two approaches to 
using a single previous measurement as the state estimate 
known as time series increments and multivariate nearest 
neighbor are discussed further below. The time series 
increments approach uses the single most recent observation 
as the state estimate. This approach is equivalent to the 
Markov model, which is often referred to as the Thomas-
Fiering model in surface water hydrology, where it has 
been applied to modeling stream flows (Bras et al. 1993). 
The multivariate nearest neighbor approach (Klise et al. 
2006a; Klise et al. 2006b) uses the measurement within 
a window of recent measurements that is closest to the 
current observation as measured within the multivariate 
space defined by the observed water quality signals.
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The field of signal processing provides another means of 
state estimation that uses cross-correlations between different 
signals as well as the autocorrelations within each signal 
to estimate the future water quality values. For example, 
the best estimate of the next pH value might be a weighted 
combination of the 10 previous pH values, the chlorine (Cl) 
value from 24 hours ago, and the temperature value from 12 
hours ago. This approach to state estimation is a common 
tool in the signal processing field and has been incorporated 
into event detection schemes (e.g., Zavaljevskl et al. 2000).

State estimation approaches that exploit cross-correlations 
between signals are well-suited to situations where sensor 
and data transmission reliability are not an issue (e.g., 
engine monitoring), but when a sensor fails, the entire 
state estimation model fails. In environmental monitoring 
situations, sensor and/or data transmission failure can be 
common and these cross-correlation based approaches might 
not be best suited to these situations.

Residual Classification
Residual classification is the process of classifying each 
deviation between the observed and predicted water quality 
values (state) as either being part of the background or 
being a significant deviation from the background. Small 
residuals (deviations) can be considered as arising from 
incomplete parameterization of the state estimation model 
and measurement error. Large deviations are deemed to be 
significant departures from the expected background water 
quality and therefore are indicative of a critical change in 
the system (an outlier). The simplest approach to residual 
classification is to apply a single threshold value to the 
residuals, and those that exceed the threshold are considered 
outliers. Two issues complicate this simple approach: 1) 
A single constant threshold value might not apply equally 
well to all times in the data set, so an adaptive thresholding 
approach could make more sense; and 2) The thresholding 
approach needs to take into account the fact that state 
estimation and residual calculation might be done separately 
for each water quality signal and therefore a multivariate 
approach to residual classification is necessary.

The threshold used in residual classification can often be 
made more efficient by adapting the size of the threshold to 
the size, or variability, of the residuals. One approach is to 
make the threshold a multiplier of the standard deviation of 
the signal such that the threshold adapts to the variability 
of the signal. Normalization of the signal values to a fixed 
variance within a moving window allows for a threshold that 
is a constant multiplier of the variance, but scales relative 
to the un-normalized signal variance. This approach is used 
in the CANARY software (see Hart et al. 2007; McKenna 
et al. 2007). Breitgand et al. (2005) demonstrate a logistic 
regression based algorithm for setting adaptive thresholds in 
the context of computer performance monitoring.

State estimation techniques that use cross-correlations 
between signals generally result in a single estimate of 
the state that is integrated over all input signals. For these 
approaches a single residual is calculated at each time step. 
Independent state estimation for each signal results in a 

residual for each signal and these must be combined, or 
fused in some way to identify an outlier at that time step. A 
simple approach is to make a single classification for each 
time step using some combination of the residual values from 
all sensors operating at that time step. Equivalent results are 
obtained by using the average or the sum of the residuals. 
Classification using the maximum residual across all sensors 
also makes it easy to record the sensor that is responsible for 
the outlier at each time step. More complicated approaches to 
decision fusion are examined by Dasarathy (1991).

Independent state estimation followed by residual fusion 
allows for the number of sensors providing information at 
each time step to change over time. The structure of the event 
detection approach does not have to change to accommodate 
the loss or addition of sensors. This flexibility is in contrast to 
state estimation tools that employ cross-correlation between 
signals where a change in the number of sensors requires 
reconstruction of the model.

Takeuchi and Yamanishi (2006) integrate their deviation 
scores (essentially residuals) over time by calculating a 
moving average value. A threshold is then applied to the 
moving average value to detect outliers and change points. 
The sensitivity of this algorithm to short-lived events is 
controlled by the length of the moving average applied to 
the residuals. The Multivariate State Estimation Technique 
(MSET) uses a sequential probability ratio test to examine 
how well the distribution of residuals fits a predefined 
Gaussian distribution (Zavaljevskl et al. 2000). Several 
different hypothesis tests are examined in the MSET 
approach to look for mean residuals that are above or below 
the expected value (mean = zero) as well as variances that 
deviate from the expected variance value. Applications of 
the MSET approach to problems of computer reliability have 
shown it to be especially adept at detecting early stages of 
component degradation (Vaidyanathan et al. 2003). McKenna 
et al. (2007) demonstrated the binomial event discriminator 
for mapping outliers to events in a water quality event 
detection application and this approach is discussed further 
below.

Water Quality Event Detection
Development of event detection tools for water security 
has been an area of recent interest. A number of published 
approaches to this problem are reviewed below. These papers 
demonstrate the response of surrogate parameters to various 
contaminants and the approaches developed to detect events. 
The majority of these approaches work with sensor data from 
a single monitoring station; however, several of them have 
been designed to integrate sensor information from more than 
one station.

Byer and Carlson (2005) examined the response of surrogate 
monitors to the introduction of various contaminants in both 
laboratory beakers and in bench scale tests using water from 
a local utility. Their results clearly indicate the response of 
several surrogate parameters to the introductions of a range 
of contaminants at various concentrations. These results are 
also used by Cook et al. (2006) in testing an event detection 
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system. More recently, Hall et al. (2007) tested the response 
of a number of commercially available water quality sensors 
in the presence of nine different contaminants introduced to 
a pipe test loop at different concentrations and found that 
at least one of the surrogate parameters responded to the 
presence of every contaminant.

Byer and Carlson (2005) conducted event detection through 
the relatively simple approach of comparing the measurement 
at any time to a predefined mean baseline level and defining 
anomalous values as those that exceed +/- 3 standard 
deviations from the mean of the baseline values. The baseline 
values were considered to be stationary and calculated by 
either using all of the available data, approximately 16,000 
observations, or using the 100 observations immediately prior 
to arrival of the contaminant at the sensor. This approach 
represents a relatively simple example of state estimation 
where a large number of previous measurements are used to 
represent a stationary estimate of the water quality state.

Cook et al. (2006) outlined the development of a case-
based reasoning system (CBRS) for the identification of 
multivariate data patterns that represent acceptable changes 
in water quality. The CBRS acts as a classifier to identify 
the current state of the system. Patterns that cannot be 
classified into existing groups are considered outliers. The 
work by Cook et al. (2006) highlights the need for accurate 
and reliable sensing of the water quality data; sophisticated 
software cannot make up for low quality input data.

Jarrett et al. (2006) focused their analysis of water quality 
data on the control exerted by the time of day and the 
day of the week on the expected water quality value. In 
the systems they examined, operation of the distribution 
network was responsible for a significant portion of the 
water quality variation, and those operations followed a 
reasonably predictable behavior. However, the temporal 
patterns controlling the water quality tended to change over 
time and therefore it was difficult to accurately predict water 
quality based solely on the time of day. Jarrett et al. (2006) 
proposed that a control chart approach applied to the first 
differences (increments) of the water quality data might 
prove useful in event detection if the center line and widths 
of the control region were both allowed to vary temporally (a 
non-stationary control chart approach).

Kroll and King (2006) provided a rough outline of a 
proprietary EDS that includes both a baseline (state) 
estimation component and a multivariate classification 
component. The classification step used the deviations in the 
measured signals from the baseline along with a library of 
previously recorded deviations to classify the cause of the 
event as being either a particular contaminant or a change in 
water quality caused by a change in operations at the utility. 
Patterns that did not match any of the library patterns were 
declared “unknown” and can be added to the library by the 
operator. The ability of the algorithm to “learn” through 
time was used to lower the number of false positives upon 
deployment.

Klise and McKenna (2006b) examined the utility of 
multivariate classification schemes for event detection. The 
state estimation approach in this work was to define every 
time step of the baseline water quality as belonging to one 
of a finite number of clusters within the multivariate space 
defined by the vector of surrogate parameter measurements, 
or by a lower dimensional representation of that space 
as defined by principal components. Results showed that 
increasing the number of clusters, which defined the baseline 
to the point where every recent time step was considered to 
be a separate cluster, improved results over smaller numbers 
of clusters. The result of this work was the development 
of the multivariate nearest neighbor (MVNN) algorithm in 
which the distance from any new measured water quality 
vector to the nearest previously measured vector in the 
multidimensional space is recorded. If that distance exceeds a 
specified threshold, the new data point is considered to be an 
outlier. Klise and McKenna (2006a) further tested the MVNN 
algorithm using event data from EPA’s Test and Evaluation 
(T&E) Facility (Hall et al. 2007) that were superimposed 
on water quality data collected at a U.S. utility and found 
that event detection results with MVNN are sensitive to 
the contaminant type and the background water quality 
variability at each monitoring station.

McKenna et al. (2006b) compared three approaches to 
state estimation for each water quality time series: time 
series increments (the previous measured value is the 
predictor of the next value), linear filters, and the MVNN 
approach. For the increment and linear filter approaches, 
the residuals between the predicted and measured water 
quality values were fused across all water quality signals, 
and this final fused residual was compared to a threshold 
to define whether or not it was an event. The multivariate 
distances in the MVNN algorithm were compared directly 
to the same threshold as they already represent a measure 
of prediction accuracy that takes into account all water 
quality signals. Testing was completed on simulated time 
series and actual measured water quality time series data. 
Simulated events were added to all data sets. Results showed 
that the MVNN algorithm was able to best predict the water 
quality background in all cases, but that the ability to predict 
the background did not necessarily translate into the best 
detection capabilities as measured by the false positive and 
false negative rates.

Prior work in event detection algorithms by Klise and 
McKenna (2006a; 2006b) and McKenna et al. (2006b) 
evaluated every time step against a threshold. Those time 
steps with residuals from the baseline that exceeded the 
threshold were classified as events (a single outlier equals an 
event). This approach led to a large number of false positives 
as water quality within utility systems can be quite noisy 
and additional noise is added to the water quality data as it 
is transmitted through the SCADA system. McKenna et al. 
(2007) introduced the binomial event discriminator (BED) 
as a means of aggregating results over multiple time steps 
to determine whether or not an event was occurring. Each 
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individual time step is now considered to be part of the 
background or an outlier and the number of outliers (failures) 
within a given number of time steps (trials) as inputs to the 
binomial distribution defines the probability that a water 
quality event is occurring. Addition of the BED to the water 
quality prediction algorithms allowed for order of magnitude 
reductions in FAs for the data sets tested.

The papers discussed above relied on various statistical 
models to estimate the state by tracking the baseline water 
quality conditions so that a comparison between the expected 
baseline value and the observed values can be made. Another 
approach to determination of the baseline conditions would 
be to employ a model that directly simulates all water 
quality parameter values through the physical and chemical 
processes occurring in the distribution network between 
the treatment plant and the monitoring station (Shang et al. 
2008). This model would have to be continuously updated 
with real-time information and could provide the predicted 
water quality values for each future time step in the same 
manner that the linear filter and multivariate nearest neighbor 
algorithms are currently used in CANARY.

Monitoring at Multiple Stations
The majority of the research in this field is focused on 
analysis of data from each monitoring station independently. 
However, several publications have shown additional benefit 
that can be gained from combining water quality data from 
more than one monitoring station. O’Halloran et al. (2006) 
developed a water parcel tracking approach that matched 
the “fingerprint” of water quality recorded at two different 
monitoring stations along the same flowpath in the network. 
They were able to use this automated technique to determine 
the transit time of the water between the two monitoring 
stations, although an assumption of steady flow was required. 
Yang et al. (2007) defined a technique for improving event 
detection and reducing false positives by combining water 
quality monitoring data from two monitoring stations along 
the same pipe. Data from two stations in series allows for 
transport modeling to be applied to the water quality between 
the two stations, where data from the first station essentially 
provides the initial conditions for the transport solution. This 
transport modeling provides improved state estimation at the 
downstream monitoring station. A more general approach to 
integrating data from two or more monitoring stations, which 
might not be in direct hydraulic connection, has recently been 
tested, with promising results (Koch et al. 2008).

Evaluating Event Detection Algorithms
An issue of considerable importance in water quality 
monitoring is the appropriate evaluation of an event detection 
algorithm. As a rule, utilities do an extremely good job of 
supplying high quality water to their customers without 
fail, and water quality events — even those due to routine 
causes such as main breaks, faults in a primary treatment 
system, or failures of a chlorine booster station — are 
rare. Documented accounts of malevolent contamination 
of a utility are even rarer, and this routine delivery of high 
quality water makes it nearly impossible to completely test 
event detection systems in real-world situations. Testing of 
EDS with experimental data obtained in laboratory settings 
(e.g., Byer et al. 2005; Kroll et al. 2006) or in specially 
designed pipe loops (e.g., Hall et al. 2007; Yang et al. 
2007) provides direct measurement of sensor responses to 
controlled contamination events, but typically the variation in 
background water quality for these tests is considerably less 
than that experienced within operating distribution networks. 
Therefore, the most direct means of evaluating event 
detection systems is to simulate the response of water quality 
monitoring sensors to the introduction of a contaminant. 
Simulation based evaluation of EDS tools has been done by 
a number of authors using varying levels of sophistication 
in the contaminant simulation approach (e.g., Allgeier et al. 
2008; McKenna et al. 2006a; McKenna et al. 2008; Shang et 
al. 2008; Uber et al. 2007; Umberg et al. 2008).

Reports of early work in event detection from water quality 
data focused on the number of known events that were 
detected. However, as pointed out by Rizak and Hrudey 
(2006), when monitoring for events that are expected to 
occur with a very low probability, dealing with false positive 
events will consume the largest amount of the monitoring 
organization’s resources. McKenna et al. (2008) employed 
the receiver operating characteristic (ROC) curve approach 
from the signal processing and medical diagnostics fields to 
evaluate water quality event detection systems. ROC curves 
demonstrate the tradeoff between the rate of false events and 
the probability of detecting true events on a single graph. 
Typical ROC curve shapes quantify the increase in false 
positive events as the sensitivity of the algorithm is increased 
to improve the probability of detecting true events. 
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Glossary
Baseline Change
A baseline change is a significant change in a statistical 
parameter, generally the mean, of the observed data. The 
point at which a baseline change occurs is a change point. 
The change in behavior of the observed signal from one side 
of the change point to the other is referred to as the baseline 
change. Baseline changes are common in some water 
distribution systems, due to changes in mixing of source 
waters within the network at different time of the day.

Change Point
Change points are defined as the point in time or space 
where an abrupt change in behavior or mode of operation 
is observed. Change points are generally identified by 
comparing data collected on both sides of the proposed 
change point. If that comparison shows the data on either side 
of the proposed change point to be significantly different, 
then that proposed change point is confirmed as a change 
point. Change points are most accurately identified using 
offline techniques for data analysis where adequate amounts 
of data have already been collected on both sides of any 
proposed change point.

Contaminant Warning System (CWS)
The CWS is composed of all the hardware and software 
components that are necessary for monitoring the water 
distribution system for contamination events. These 
components include the sensors, the Supervisory Control 
and Data Acquisition (SCADA) system to collect and 
transmit the data from the sensors to a central facility, 
the database to hold sensor information, and the event 
detection system (EDS) that processes the data to 
provide some indication of the occurrence of an event. 
Other components of a CWS consist of monitoring 
non-water quality data streams (from public health and 
physical security) and the decision support approaches 
and responses applied to these monitoring systems.

Event
An activity or behavior that is unusual relative to normal 
modes of operation. Abnormal activity or operation relative 
to the background or ambient modes of operation can be 
classified as an event. An event is a sustained period of such 
abnormal activity that is of a longer duration than an outlier, 
but of shorter duration than a baseline change.

Event Detection System (EDS)
The software system that contains the data handling, 
algorithms, and input/output functions necessary to identify 
events from water quality time series. Typically, the inputs to 
an EDS are the water quality data streams from the sensors 
as stored in a SCADA database. The output of an EDS is an 
indication of the state of the water quality. This indication 
can be a binary signal such as “alarm/no-alarm” or it can be 
a continuous indication of the water quality state such as the 
probability of an event occurring at every time step. The EDS 
itself is a component of the more comprehensive CWS.

Offline
Analysis or operations that are completed without 
connection to any real-time source of data or 
any means of implementing real-time control are 
considered offline. Analysis of previously collected 
“historical” data is done in an offline manner.

Online
Analysis or operations that are completed with connection 
to a real-time source of data or that have some means of 
implementing real-time control are considered online. Online 
analysis typically implies that data are received in a periodic 
manner and the analysis is completed prior to the receipt 
of additional data. Analysis of real-time data as provided 
through connection to a SCADA system is completed in an 
online manner.

Outlier
An outlier is defined here to be a single time step with 
behavior that is considered anomalous relative to the 
background or expected behavior for that time step. A large 
enough number of outliers within a prescribed time interval 
could constitute an event.

Residual
The difference between the predicted and observed water 
quality values at a single time step. The size of the residual 
is classified as being indicative of background water quality 
conditions or of anomalous conditions representing water 
quality events. 

Supervisory Control and Data Acquisition (SCADA) system 
The hardware and software components that transmit water 
quality and operations data from in-situ sensors throughout 
the network to a central facililty. The SCADA system 
also includes the database hardware and software to store 
collected data.
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Appendix B.
Quality Assurance

EPA’s quality systems cover the collection, evaluation, 
and use of environmental data by and for the Agency, and 
the design, construction, and operation of environmental 
technology by the Agency. The purpose of EPA’s quality 
systems is to support scientific data integrity, reduce or 
justify resource expenditures, properly evaluate of internal 
and external activities, support reliable and defensible 
decisions by the Agency, and reduce burden on partnering 
organizations. 

All research presented in this report that was performed by 
the authors was completed under approved EPA and DOE 
quality practices adapted from the Advanced Simulation and 
Computing (ASC) Software Quality Plan and EPA Guidance 
for Quality Assurance Project Plans. The ASC Software 
Quality Plan was generated to conform with the SNL 
corporate and DOE QC-1 revision 9 standards.

The quality assurance (QA) practices followed under this 
research included:

• Project Management
• Computational Modeling and Algorithm Development
• Software Engineering
• Data Generation and Acquisition
• Model and Software Verification
• Training

Project management is the systematic approach for balancing 
the project work to be done, resources required, methods 
used, procedures to be followed, schedules to be met, and the 
way that the project is organized. The project management 
QA practices included: performing a risk-based assessment 
to determine level of formality and applicable practices; 
identifying stakeholders and other requirements sources; 
gathering and managing stakeholders’ expectations and 
requirements; deriving, negotiating, managing, and tracking 
requirements; identifying and analyzing project risk events; 
defining, monitoring, and implementing the risk response; 
creating and managing the project plan; and tracking project 
performance versus project plan and implementing needed 
corrective actions.

Modeling and algorithm development are often closely 
related activities; modeling is the process of mathematically 
formulating a problem, while algorithm development 
is the process of finding a method to solve the problem 
computationally. These activities can be distinguished from 
software engineering efforts, which are more specifically 
focused on ensuring that software generated has high quality 
itself. The modeling and algorithm development QA practices 
included: documenting designs for models and algorithms; 
conducting peer reviews of modeling assumptions and 
algorithmic formulations; documenting preliminary software 
implementation; documenting sources of uncertainty in 
modeling and algorithmic methods; and completing peer-
review of modeling and algorithmic outputs.

Software engineering is a systematic approach to the 
specification, design, development, test, operation, support, 
and retirement of software. The modeling and algorithm 
development QA practices included: communicating and 
reviewing software design; creating required software 
and product documentation; identifying and tracking third 
party software products and follow applicable agreements; 
identifying, accepting ownership, and managing assimilation 
of other software products; performing version control of 
identified software product artifacts; recording and tracking 
issues associated with the software product; ensuring backup 
and disaster recovery of software product artifacts; planning 
and generating the release package; and certifying that the 
software product (code and its related artifacts) was ready for 
release and distribution.

Input data for model development and application efforts are 
typically collected outside of the modeling effort or generated 
by other models or processing software. These data need 
to be properly assessed to verify that a model characterized 
by these data would yield predictions with an acceptable 
level of uncertainty. The data generation and acquisition QA 
practices included: documenting objectives and methods of 
model calibration activities; documenting sources of input 
data used for calibration; identifying requirements for non-
direct data and data acquisition; developing processes for 
managing data; and documenting hardware and software used 
to process data.

The purpose of software verification is to ensure (1) 
that specifications are adequate with respect to intended 
use and (2) that specifications are accurately, correctly, 
and completely implemented. Software verification also 
attempts to ensure product characteristics necessary for 
safe and proper use are addressed. Software verification 
occurs throughout the entire product lifecycle. The software 
verification QA practices included: developing and 
maintaining a software verification plan; conducting tests to 
demonstrate that acceptance criteria are met and to ensure 
that previously tested capabilities continue to perform as 
expected; and conducting independent technical reviews to 
evaluate adequacy with respect to requirements.

The goal of training practices is to enhance the skills and 
motivation of a staff that is already highly trained and 
educated in the areas of mathematical modeling, scientific 
software development, algorithms, and/or computer 
science. The purpose of training is to develop the skills and 
knowledge of individuals and teams so they can fulfill their 
process and technical roles and responsibilities. The training 
QA practices included: determining project team training 
needed to fulfill assigned roles and responsibilities; and 
tracking training undertaken by project team.
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