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Figure 5-11. Candidate oral slope factor array. 
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6.  FEASIBILITY OF QUANTITATIVE UNCERTAINTY ANALYSIS   
FROM NAS EVALUATION OF THE 2003 REASSESSMENT 

6.1.  INTRODUCTION 
This section focuses on the third area for improvement in the 2003 Reassessment that was 

identified by the National Academy of Sciences (NAS) review committee (NAS, 2006, 198441), 

i.e., improving transparency, thoroughness, and clarity in quantitative uncertainty analysis. 

Although the NAS committee summarized the shortfalls in the 2003 Reassessment categorically, 

the elaborations within their report often contain the qualification “if possible” and do not take a 

position with regard to the feasibility of many of its suggestions.  With appreciation for the 

extent of information available for dioxin, the goal of this section is to circumscribe the 

feasibility of a data-driven quantitative uncertainty analysis for TCDD dose-response 

assessment.  Following brief highlights of the evolution of quantitative uncertainty analysis for 

such applications, this section lays out definitions of key terms, reviews EPA’s position  

regarding cancer and noncancer endpoints, summarizes the NAS critique, and evaluates the 

feasibility of quantitative uncertainty analysis for TCDD within the framework of EPA’s 

noncancer RfD and cancer slope factor dose-response methodologies.   

6.1.1.  Historical Context for Quantitative Uncertainty Analysis 

The basic methods of probabilistic risk assessment (PRA) were developed in the 

aerospace program in the 1960s, and they found their first full-scale application in the 

U.S. Nuclear Regulatory Commission’s (U.S. NRC’s) Reactor Safety Study of 1975―including 

accident consequence analysis and uncertainty analysis (U.S. NRC, 1975, 543729). This study, 

commonly referred to as the Rasmussen Report after its lead author, is considered to be the first 

modern PRA. In the aftermath of the 1979 Three Mile Island accident, a new generation of 

PRAs appeared in which some of the methodological problems of the 1975 study were avoided.  

These advances were reflected in the Commission’s Fault Tree Handbook (U.S. NRC, 1981, 

543730) and PRA guide (U.S. NRC, 1983, 543732), which shored up and standardized much of 

the risk assessment methodology.  An extensive chapter of the latter was devoted to uncertainty 

and sensitivity analysis.  These documents formed the basis for standards and guidelines 
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established by other agencies, including the U.S. Department of Energy (U.S. DOE, 1992, 

543733) and National Aeronautics and Space Administration (NASA, 2002, 543734). 

In 1991, a set of U.S. NRC studies known as NUREG 1150 used structured expert 

judgment to quantify uncertainty and set new standards for uncertainty analysis, in particular 

with regard to expert elicitation (U.S. NRC, 1991, 543736). This was followed by a joint 

U.S.-European Union (EU) program for quantifying uncertainty in accident consequence models.  

Expert judgment methods were further elaborated in those evaluations, as well as screening, 

dependence modeling and sensitivity analysis (EC, 2009, 543738). Studies building off of this 

work have performed a large-scale uncertainty analysis of European consequence models and 

provided extensive guidance on identifying important variables; selecting, interviewing and 

combining experts; propagating uncertainty; inferring distributions on model parameters; and 

communicating results, as documented by Goossens et al. (1996, 548727; 1997, 543752; 1998, 

548726; 2001, 548730; 2001, 548731; 2001, 548732; 2001, 548735; 2001, 548737; 2001, 

548738; 2001, 548734) and others (Brown et al., 1997, 543739; Harper et al., 1995, 202317; 

2002, 198124). 

The National Research Council (NRC) has been a persistent voice in urging the 

government to enhance its risk assessment methodology beginning with its report on risk 

assessment in the federal government (NRC, 1983, 194806). The Council’s 1989 report, 

Improving Risk Communication, inveighed against minimizing the existence of uncertainty and 

noted the importance of considering the distribution of exposure and sensitivities in a population 

(NRC, 1989, 000858). The issue of uncertainty was a clear concern in subsequent reports, 

including those assessing human exposure to airborne pollutants (NRC, 1991, 037823). Building 

on its evaluation of Issues in Risk Assessment (NRC, 1993, 078637), the landmark study Science 

and Judgment in Risk Assessment (NRC, 1994, 006424) gathered many of these themes in a plea 

for quantitative uncertainty analysis as “the only way to combat the false sense of certainty 

which is caused by a refusal to acknowledge and (attempt to) quantify the uncertainty in risk 

predictions.” A subsequent report, Estimating the Public Health Benefits of Proposed Air 

Pollution Regulations (NRC, 2002, 035312), identified three barriers to the broad acceptance of 

recent EPA health benefit analyses: (1) the large amount of uncertainty inherent in these 

analyses, (2) the manner in which EPA deals with this uncertainty, and (3) “… projected health 

benefits are often reported as absolute numbers of avoided death or adverse health outcomes 
This document is a draft for review purposes only and does not constitute Agency policy. 
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without a context of population size or total numbers of outcomes.”  The Council encouraged 

EPA to “explore alternative options for incorporating expert judgment into its probabilistic 

uncertainty analyses.”  

In an early 2009 report, Science and Decisions: Advancing Risk Assessment, the NRC 

committee on improving risk analysis encouraged EPA to harmonize approaches for cancer and 

noncancer dose-response assessment (NRC, 2009, 194810), which involves uncertainty issues 

discussed in this section. Even more recently, EPA released a draft white paper, Using 

Probabilistic Methods to Enhance the Role of Risk Analysis in Decision Making (U.S. EPA, 

2009, 522927). Although not focused specifically on quantitative uncertainty analysis, there is 

overlap with the issues treated here, and relevant insights are anticipated from ongoing efforts in 

this area.   

6.1.2.  Definition of Terms 
For purposes of this study, the following definitions are adopted:52 

52Many of these definitions  are standard terms in probability and statistics, as described in Saltelli et al. (2000, 
543756), Cox (2006, 594342), Kurowicka and Cooke (2006, 543758), and NRC (2007, 543748); some are reflected  
in current  Agency practice (U.S. EPA, 2009, 522927). 

Uncertainty Characterization. This consists of a Structured Uncertainty Narrative and, if 
the uncertainty is supported by quantitative models, Quantitative Uncertainty Analysis.  

Structured Uncertainty Narrative.  This identifies the assumptions conditional on which 
uncertainty is to be characterized and delineates the type of arguments with supporting 
evidence that buttress these assumptions.  

Quantitative Uncertainty Analysis. This is a quantification of the uncertainty attending  
the use of quantitative models.  It applies to a mathematical model of physical  
phenomena, some of whose parameter values are not known with certainty.  A joint 
distribution is assigned to uncertain model parameters and propagated through the model 
to yield a joint distribution over the model output.  Thus, a quantitative uncertainty 
analysis always has a joint distribution over model outputs as its result. 

Joint Distribution/Marginal Distribution. For a set of uncertain quantities, a joint 
distribution is an assignment of probabilities (or probability densities) for each possible 
combination of values of these quantities.  Each uncertain quantity has a marginal 
distribution, that is, an assignment of probabilities (or probability densities) to each 
possible value of that quantity. Assigning a marginal distribution to each quantity is not 
equivalent to assigning a joint distribution to the set of quantities, unless the quantities 
are independent; in this case the joint distribution is just the product of the margins.  
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Qualitative/Informal Uncertainty Analysis. This assembles the arguments and evidence 
and provides an assessment of their plausibility  in terms of verbal modifiers.  The 
meaning of verbal modifiers such as “likely/unlikely” or “plausible/implausible” in the 
natural language53

53Natural language  denotes any discourse in  which the meaning of  the words is not formalized; rather, these words 
are just “as they come in off the street” with  whatever meaning a participant may give them. 

 is indeterminate and context dependent.  The way in which these 
qualifiers combine in the natural language requires critical attention from a quantitative  
viewpoint. (For example, if A is likely and B is likely and C is likely, is A and B and C 
likely?)  It is sometimes claimed that the probability formalism does not capture the way 
people reason with uncertainty, and many alternatives have been proposed.54  

54Before the advent of  personal computers, various shorthand techniques were developed for computing system risk.  
In control theory, schemes of  ‘interval probabilities’ were proposed which could  be  propagated through  a system to  
yield bounds on system reliability.  Whereas these bounds originally reflected accuracy of shorthand approximations 
of complex formulae, their offspring have been proposed as quantifications of uncertainty.  Alternative notions  of 
uncertainty are also  proposed with the goal of simplifying the assessment and  computational burden or capturing  
putative features of uncertainty which are overlooked in probability theory.  These include possibility theory, fuzzy 
numbers, qualitative algebra, imprecise probabilities, belief functions, certainty factors, and the like.  Nonmonotonic 
reasoning  systems attempt to capture reasoning about knowledge, or reasoning from partial knowledge; they include 
default logic, defeasible logic, abductive logic, and autoepistemic logic, to  name a few.   

This is not the place to discuss foundational issues, except to remark that the practitioner 
wishing to depart from the standard probability formalism should carefully explore the 
whole range of alternatives and critically examine the operational meaning of the 
primitive notions.   

Sensitivity Analysis. If a quantitative model uses “nominal values” (approximations of the 
real values) for various input parameters, a sensitivity analysis is performed by choosing 
different values for these parameters and re-running the model to assess the impact of 
changes in these parameters on model output.  Applicable methods include one- and 
two-at-a-time methods, design of experiments and Morris’s method (Saltelli et al., 2000, 
543756). They aim at estimating first- and perhaps higher-order effects with a minimal 
number of model runs, by systematically varying the nominal values.  In large 
uncertainty analyses, sensitivity analysis is used to screen variables for in-depth 
uncertainty quantification, and thus is part of a quantitative uncertainty analysis 
(Kurowicka and Cooke, 2006, 543758). As a note, the NAS committee report (NRC, 
2006) does not distinguish between uncertainty and sensitivity analysis.  In fields which 
have not developed a tradition in uncertainty quantification, the spread of values 
generated by a sensitivity analysis is sometimes presented as a representation of 
uncertainty (Murphy et al., 2004, 543741). The question of whether this is or is not the  
case is moot so long as the uncertainty on model input parameters is not quantified.  
Systematically varying input values is not the same as sampling input parameter values 
from their uncertainty distributions.  In any event, a systematic approach to parameter 
variation is essential; simply choosing a few values of interest and generating different 
output is of limited scientific benefit and inevitably raises questions of selection bias.  
That said, if alternative values are commonly used and therefore recommend themselves, 
then running these through the models can help sensitize users to parameter variations 
and their impacts on model outputs.   
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Cognitive Uncertainty. This concerns uncertainty regarding what is the case.  Not 
knowing “what is the case” may be conceived as uncertainty over the set of all 
possibilities, sometimes expressed as ‘uncertainty over the set of possible worlds.’  
Uncertainty over possible worlds may be represented formally as probability; that is, the 
uncertainty of a given situation is represented as a number between zero and one, and the 
uncertainty of either of two mutually exclusive situations is the sum of the uncertainties 
of each situation.55

55These are known collectively as Kolmogorov’s probabililty  axioms.  The additivity of probability for exclusive 
alternatives states, e.g., that the probability of an  unseen  object being  red or green is the sum of the probability that it 
is red and the probability that it is green.  This of course assumes that “red” and “green” are clearly defined, such  
that nothing can be simultaneously  red and green.  Many  alternative representations of uncertainty contest this 
additivity property. 

  Two interpretations or operationalizations of the probability 
formalism are current: the objective or frequentist interpretation and the subjective or 
Bayesian interpretation.  These interpretations are not mutually exclusive, as subjective 
probabilities can and often do track relative frequencies. 

Volitional Uncertainty. This concerns uncertainty regarding what to do.  In the natural 
language, being unsure which course of action to choose is also called “uncertainty.”  
Insofar as uncertainty on the best course of action can be translated into a claim about the 
state of the world, volitional uncertainty can be translated into cognitive uncertainty.  For 
example, a regulatory body charged with setting a speed limit is obliged to make a 
decision. The decision may be cautious or reckless, well or poorly motivated, wise or 
foolish; but it cannot be true or false.  Since the decision makes no claim about the state 
of the world, it cannot be uncertain in the cognitive sense.  The uncertainty cannot be 
analyzed by sampling from some distribution.  However, if the decision is based on the 
claim that the chosen speed limit minimizes accidents while maintaining a prescribed 
traffic volume, that claim may be uncertain and may be subjected to quantitative 
uncertainty analysis. A discretionary decision of a regulatory body may entrain cognitive 
uncertainty, but it becomes amenable for quantitative uncertainty analysis only when it is 
linked to a claim about the state of the world.  

Aleatoric/Epistemic Uncertainty. This terminology has become standard in the technical 
uncertainty analysis literature, and it has been called Variability/Uncertainty in some 
areas, particularly dealing with human populations.  A variable whose uncertainty is 
aleatoric for a given population takes different, uncertain, values for each member of the 
population. If its uncertainty is epistemic, it takes the same uncertain value for all 
members of the population.  Issues involving uncertainty and variability or epistemic and 
aleatory uncertainty translate into issues of dependence, when conducting a quantitative 
uncertainty analysis (see Section 6.1.3.3). In its Science and Judgment report, NRC 
(1994, 006424) correctly remarks that “the amount of variability is generally itself an 
uncertain parameter.”  It is natural to ask whether a given uncertainty is aleatoric or 
epistemic, whereas it is awkward to ask whether this uncertainty is uncertain or 
variable―which explains the preference for the epistemic/aleatoric terminology.   
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6.1.3. Key Elements of a Quantitative Uncertainty Analysis 

The uncertainty propagation can be performed by some rough estimation, as for example 

the delta method (Oehlert, 1992, 543742), or in rare cases it can be performed analytically, as in 

simple error propagation.56

56Simple  measurement error is  often represented by adding a  normally distributed  random  variable with  mean zero 
to a “true” value.  If several measurements are performed in succession, and the errors on each measurement are 
assumed to  be independent, then the error induced  by adding the measurement results is  also a normally distributed 
random variable whose mean is zero and whose variance is the sum of the variances on the individual 
measurements.  

  Most often, however, it will be performed using Monte Carlo 

simulation.  A joint distribution is assigned to the parameters of a quantitative model and then 

propagated through the model by sampling repeatedly from this joint distribution, computing 

model output and generating a distribution of model output.  Every uncertainty analysis is 

conditional on initial assumptions.  A “complete” uncertainty analysis is an unattainable goal; the 

best that can be done in practice is to identify and motivate the assumptions that are used.  This 

section is not a how-to guide, but a to-do list of key elements of any quantitative uncertainty 

analysis.57   

57These key elements of quantitative uncertainty analysis are discussed in many publications such as Saltelli et al. 
(2000, 543756), Cox (2006,  594342), Kurowicka and Cooke (2006, 543758), NRC (2007, 543748) and EPA (2009,  
522927). 

6.1.3.1. Quantitative Model 

The starting point of any quantitative uncertainty analysis is a mathematical model or 

procedure for calculating quantities of interest.  A structured narrative explains the choice of 

quantitative models. If some values of input parameters for this calculation are not known with 

certainty, then the question arises: “What is the uncertainty attending the use of this model?”  

This is the question a quantitative uncertainty analysis seeks to answer. 

6.1.3.2. Marginal Distributions over Model Parameter 

If the model parameters are directly measurable with sampling error, then the sampling 

distribution may itself be used in the quantitative uncertainty analysis.  If the model parameters 

are fit to data that are sampled from a known or hypothesized distribution, then by resampling 

this distribution and refitting the model, distributions over the model parameters may be 

constructed. Physically-based simulation models, such as pharmacokinetic models or 

environmental transport models, may be solved analytically if equilibrium reaction rates (the 

http://cfpub.epa.gov/ncea/hero/index.cfm?action=search.view&reference_id=543742�
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transfer coefficients) are constant.  If these rates are not constant, as when concentrations are 

near saturation levels, then simulating the pharmacokinetics or transport is indicated.  Structured 

expert judgment has been applied for uncertainty quantification within the engineering 

community since the time of the Rasmussen Report (U.S. NRC, 1975, 543729). More recently, 

this approach has been “test-driven” by EPA in assessing health effects of fine particulates 

(Walker et al., 1999, 198615), and its potential application has been identified in the Agency’s 

Guidelines for Carcinogen Risk Assessment, commonly referred to as the Cancer Guidelines  

(U.S. EPA, 2005, 086237).58    

58The EPA (2005, 086237) cancer guidelines state: “In many of these scientific and engineering disciplines, 
researchers have used rigorous expert elicitation methods  to overcome the lack of peer-reviewed methods and 
data….”  These cancer guidelines are flexible enough to accommodate the use of expert elicitation to characterize 
cancer risks, as a complement to the methods presented in the cancer guidelines.  According to NRC (2002, 
035312), the rigorous use of expert elicitation  for the analyses of risks is considered to  be quality science.” 

6.1.3.3.  Dependence between Parameter Uncertainties: Aleatoric and Epistemic (Uncertainty 
and Variability) 

Two uncertain quantities are independent if knowledge about one of them does not alter 

our uncertainty regarding the other.  The quantities are dependent if they are not independent.  

The role of dependence modeling in quantitative uncertainty analysis must be addressed.  To 

illustrate, cigarette smoking and body fat are both thought to influence biomarkers for toxic 

response to dioxin exposure, such as ethoxyresorufin-O-deethylase (EROD) activity (Pereg et al., 

2002, 199797). In an individual sampled at random  from a target population, both percent body 

fat and whether (and how much) he or she smokes are uncertain.59  

59Because dioxins generally distribute to body fat/lipid, the  percent body fat is often used  to estimate body burden; a  
default value of  25% is common   (Connor and  Aylward, 2006, 197632).  However, body fat percentage varies 
widely between individuals, from a minimum essential level  (e.g., 2% for men, 10% for women) to  obesity (e.g., 
38% or more for men, 42% for women).  Considering that current estimates suggest 30% of the U.S.  population are 
obese, an  uncertainty analysis of  dioxin  risk in this population should sample individuals from their gender/body fat 
distribution and correlate this with  other known or suspected covariates influencing toxic response (such as diet, 
smoking, natural and endogenous ligands, disease, and age).   

However, these uncertainties 

are not independent, inasmuch as smokers tend to have less body fat (Vanni et al., 2009, 

543754). 

Issues involving uncertainty and variability, or epistemic and aleatory uncertainty, 

translate into issues of dependence when conducting a quantitative uncertainty analysis.  For 

example, a constant used to estimate the biokinetic behavior of dioxin may be uncertain.  If it is 

believed to be the same for every member of the population, the uncertainty is termed 
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“epistemic.”  In a quantitative uncertainty analysis, this factor would be sampled from its 

uncertainty distribution on each Monte Carlo run and used for all members of the population.  

Body fat, in contrast, is aleatoric. We do not sample one value from the body fat distribution and 

use this value for all members of the population on each Monte Carlo run.  Instead we sample a 

body fat value for each individual on each run.  Because body fat is correlated with other 

relevant variables (e.g., smoking, gender, age, and socioeconomic status), all of these variables 

should be sampled in a manner that reflects their dependences.  Kinetic constants whose 

uncertainty is epistemic are completely correlated across individuals: if the value is 0.5 for one 

individual, it is 0.5 for everyone. Body fat values vary from individual to individual, and they 

are correlated through a host of other variables. 

6.1.3.4.  Model Uncertainty 

All models, being idealizations, are false; on this there is no uncertainty to quantify.  

However, the choice of model may constrain the ability to represent uncertainty in observable 

phenomena.  Thus, in a linear low-dose model, uncertainty over a cancer slope factor may be 

quantified, but uncertainty regarding changes in slope at distinct low-dose regimes cannot be 

captured. When the model choice imposes severe and potentially unwelcome constraints on 

uncertainty quantification, this must be addressed.  Distributions over model parameters may be 

selected and evaluated based on their ability to reflect uncertainty distributions over observable 

phenomena predicted by the models.60

60 Such techniques were first used on a large scale in the U.S. NRC-EU joint uncertainty analysis of consequence 
models for accidents at nuclear power plants, see Goossens et al. (1996,  548727; 2001, 548737; 2001, 548738; 2001, 
548731; 2001, 548732; 2001, 548735) (Bock et al., 1998, 548752). 

  In such cases, the uncertainty propagated through the 

quantitative model is not strongly model-dependent.  In other cases, multiple model alternatives 

may be applied, whose “probability of being the true model” is known or assumed.  Since 

different models can always be regarded as specializations of more general models, the 

distinction between parameter and model uncertainty is sometimes more apparent than real.  For 

example, as illustrated in the EPA Benchmark Dose Software (BMDS) (U.S. EPA, 2000, 

052150), the multistage and Weibull dose-response models both contain the model Pr(x) = γ + 

(1 − γ) (1 − e−β1x) as a submodel, to which they collapse if other parameters are zero (multistage) 

or one (Weibull).  Recalling that the function 1/(1 + x) is first-order equivalent to (1 − x) for 

http://cfpub.epa.gov/ncea/hero/index.cfm?action=search.view&reference_id=52150�
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small x, the same may be said for logistic models as well.  In this case, these models could easily 

be parameterized within one family, rendering the choice between them a choice of parameter 

values. Similarly, the choice between sub-, supra-, and linear models is sometimes reduced to 

parameter estimation within a more general class of model (Hoel and Portier, 1994, 198741). 

In other cases, the reduction of model uncertainty to parameter uncertainty is less natural.  

For example, according to the “chemoprotection model” of Greenlee et al. (2001, 015400), 

dioxin’s binding to the aryl hydrocarbon receptor (AhR) inhibits proliferation in tumor cells and 

thus suppresses mammary tumors.  Dose-dependent protection and cancer induction can both be 

true, each applying to different tissues. Although mathematical models exhibiting these twin 

features have been suggested (e.g., Kohn and Melnick, 2002, 199104), these models are not yet 

readily estimable from data, and the choice between them is referred to the structured narrative.  

6.1.3.5. Sampling Method 

All sampling on a computer is “pseudo random.”  Significant issues arise in choosing a 

method for sampling high-dimensional distributions with dependence.  If evaluating the 

quantitative model is very time consuming, various “quasi random” schemes may be applied, 

including Latin hypercube sampling, importance sampling, and Hammersley sampling.  These 

methods involve trade-offs between economy and accuracy of the dependence modeling.  

6.1.3.6.  Method for Extracting and Communicating Results 

When a large quantitative uncertainty analysis has been performed, the method for 

identifying important contributors and communicating this information to users is not 

straightforward. Analysts have proposed many ways to quantify the uncertainty contribution of 

one variable, or set of variables, on others,61 and the analyst’s decision at this juncture may 

strongly impact the “take-home” message from the study.  An importance measure that averages 

61A few examples may suffice.  The standard Pearson correlation coefficient measures the linear dependence 
between two variables, positive or negative.  The rank or Spearman correlation coefficient measures the monotone 
dependence.  The correlation ratio measures the (unsigned)  variance contribution of an explanatory  variable on a  
target variable.  The regression coefficient measures the expected change in standard (not natural!) units  of a target  
variable, per standard  unit change in an explanatory variable, and assumes this expected  change is independent of  
the values of the explanatory variables.  Multiple correlation measures the  correlation between  a given variable  and  
its best linear predictor based on another set  of variables.  The partial correlation of two variables given a set of  
other variables is their correlation after discounting the influence of the other variables.   The correlation ratio,  
multiple correlation, and the regression coefficient are not  symmetric; the correlation ratio and multiple correlation 
are always non-negative (Kurowicka and Cooke, 2006, 543758; Saltelli et al., 2000, 543756). 
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over an entire sample space may obscure the features of real interest.  For example, the drivers of 

cancer induction at low doses might be different from the drivers at high doses.  If the drivers of 

low-dose cancer induction are of interest, then importance measures that average over all doses  

should not be considered. 

6.2.  EPA APPROACHES FOR ORAL CANCER AND NONCANCER ASSESSMENT 
Different types of toxicity information have historically been used in EPA’s oral cancer 

and noncancer dose-response assessments, although efforts to harmonize these approaches are 

ongoing. For oral exposures, noncancer endpoints are commonly assessed using the RfD 

methodology to derive “an  estimate  (with  uncertainty  spanning  perhaps an order of magnitude) of 

a daily oral exposure to the human population (including  sensitive subgroups) that is likely to be 

without an appreciable risk of deleterious effects during a lifetime.”  In contrast, cancer 

endpoints are commonly assessed using a dose-response function with the probability of excess 

risk above background modeled as a linear function of dose, for doses down to zero.  The RfD 

method relies on a POD.  The cancer dose-response method uses a POD if the linear model is 

chosen. From the Cancer Guidelines, cancer endpoints can also be assessed using the RfD 

methodology if the proof burden is satisfactorily met (as described in Section 5.2.3.4.1.2).  

Toxicity reference values have typically been derived for human noncancer endpoints 

based on a no-observed-adverse-effect level (NOAEL) or lowest-observed-adverse-effect level 

(LOAEL) from animal bioassay studies.  This terminology suggests a biological population 

threshold beneath which no harm is anticipated.  Reference values such as the oral RfD or 

inhalation reference concentration are derived by applying uncertainty factors (UFs) to a POD.   

Depending on the nature of available data and modeling choice, a POD can be selected from  

values other than a NOAEL or LOAEL, such as an EDx (effective dose eliciting x percent 

response), or a benchmark dose (BMD) or its lower confidence bound (BMDL).  The BMD is 

the dose that induces a benchmark response (BMR), which is often chosen to represent a 5 or 

10% increase in excess risk above background. The POD is divided by one or more uncertainty 

factors that represent knowledge gaps (see Section 6.4.1.2 for details on specific types of UFs).   

An RfD is described as “likely to be without appreciable risk” but the probabilistic 

language has not as yet been operationalized.  A quantitative definition of “appreciable” has not 

been articulated, and methods to compute risks above the RfD as a function of dose have not 
This document is a draft for review purposes only and does not constitute Agency policy. 
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been designated for use by the EPA; thus, it is not current practice to ascertain that the risk is 

indeed not appreciable. In addition, different participants in discussions over 

threshold/nonthreshold models for dioxin may have different perspectives regarding how to 

define “appreciable risk.” Under the current POD/UF framework, dose-response functions are 

not provided for calculating the actual risk at or above the RfD.  Instead, to provide a “risk 

indicator” for use in screening for health hazards, a hazard quotient (HQ) is computed as the 

ratio of a given oral exposure to the RfD, or a margin of exposure (MOE) is estimated as the 

ratio of the POD to the human exposure level. 

For the cancer endpoint, an oral cancer slope factor may be derived for human health risk 

assessment, typically based on tumor incidence data from an animal bioassay or on cancer 

incidence or deaths from an epidemiologic study.  In the EPA Cancer Guidelines, cancer is 

predominantly thought to have no population biological threshold and a linear extrapolation to 

zero is applied from the POD based on extra risk above background, i.e., the probability of the 

endpoint decreases linearly in dose from the POD to zero or to a population background level.  In 

the absence of sufficient information on the cancer mode of action (MOA), the linear model is 

applied as a default.  The linear model also can be applied when there is sufficient MOA 

evidence supporting this choice for low-dose cancer induction.  Cancer endpoints could also be 

evaluated using a “nonlinear” model.  In this case, the proof burden clearly rests on the nonlinear 

model; there must be sufficient evidence to override the health-protective default or 

scientifically-based choice of a linear model, as described in the Cancer Guidelines.  These 

Guidelines state, “When adequate data on mode of action provide sufficient evidence to support 

a nonlinear mode of action for the general population (emphasis added) and/or any 

subpopulations of concern, a different approach―a reference dose/reference concentration that 

assumes that nonlinearity―is used.” In current terminology, the RfD methodology applies to the 

cancer endpoint if there is sufficient evidence supporting a “zero slope at zero” model; 

otherwise, the linear nonthreshold model applies by default.  (See Section 5.2.3 for a detailed 

discussion of linear vs. nonlinear extrapolations below the observed data, population vs. 

individual thresholds, and how the Cancer Guidelines are applied in choosing dose-response 

model forms for risk assessment.)   

This document is a draft for review purposes only and does not constitute Agency policy. 
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6.3.  HIGHLIGHTS OF NAS REVIEW COMMENTS ON UNCERTAINTY 
QUANTIFICATION FOR THE 2003 REASSESSMENT 

The NAS (2006, 198441; 2006, 543760) identified a number of uncertainty 

characterization issues for the 2003 Reassessment; key sources of uncertainty for which 

quantification is suggested are highlighted in Table 6-1.  The discussion in this section focuses 

on comments related to dose response. 

There are several nuances in the NAS position relative to the need for substantial 

improvement in transparency, thoroughness, and clarity in quantitative uncertainty analysis for 

the 2003 Reassessment.  These nuances concern whether the nonlinear model (note that the NAS 

committee uses “sublinear” and “nonlinear” interchangeably) is scientifically better supported 

than the linear model, and if the sublinear model is better supported, whether this is based on 

data or on apodictic knowledge (knowledge without uncertainty) of the MOA.  The NAS 

committee does not distinguish between individual and population dose-response models; 

however the criteria from the EPA Cancer Guidelines clearly apply to population models.  

Assuming that the AhR-mediated MOA implies a threshold for each individual, the step to a 

population “zero slope at zero” model requires the following, as identified and discussed in detail 

in Section 5.2.3.: 

1. The distribution of the individual thresholds induced by the MOA, and  

2. The dose-response function for values above the thresholds. 

This information can either come from data or from known information of the MOA, but 

the burden of proof clearly rests on the nonlinear model.  This section summarizes the NAS 

committee’s overall positions.  Responses to specific suggestions are given in Section 6.4 and 

summarized in Section 6.5. Several excerpts of specific comments from NAS (2006, 198441) 

illustrate key issues. 

The NAS committee favors the nonlinear model with a threshold: 

This document is a draft for review purposes only and does not constitute Agency policy. 
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…the committee concludes that, although it is not possible to scientifically prove 
the absence of linearity at low doses, the scientific evidence, based largely on 
mode of action, is adequate to favor the use of a nonlinear model that would 
include a threshold response over the use of the default linear assumption.  
(p. 122)  

The committee does not state whether the threshold applies to the population, or whether each 

individual has his/her own threshold. 

The NAS also comments on whether the nonlinear model should be used to compare with 

the linear default: 

Because the committee concludes that the data support the hypothesis that the 
dose-response relationship for dioxin and cancer is sublinear, it recommends that 
EPA include a nonlinear model for cancer risk estimates but also use the current 
linear models for comparative purposes.  (p. 16)   

The committee does not suggest what the (population/individual) threshold might be, nor how it 

might be supported on the basis of data.  Rather, the apodictic knowledge that there is a 

(population/individual) threshold places the dioxin risk assessment within the RfD framework, 

using a HQ or MOE as the basis for indicating the potential risks from exposure.  The committee 

further asks for a quantitative characterization of the range of uncertainty: 

The committee determined that the available data support the use of a nonlinear 
model, which is consistent with receptor-mediated responses and a potential 
threshold, with subsequent calculations and interpretation of MOEs.  EPA’s sole 
use of the default assumption of linearity and selection of ED01 as the only POD 
to quantify cancer risk does not provide an adequate quantitative characterization 
of the overall range of uncertainties associated with the final estimates of cancer 
risk. (p. 24) 

Regarding the Cancer Guidelines’ requirement of sufficient evidence to use a nonlinear 

approach for cancer risk assessment, the committee indicates that quantitative evidence will not 

decide the linearity/nonlinearity (nonthreshold/threshold) issue, but knowledge (without 

uncertainty) of the MOA should be used: 

This document is a draft for review purposes only and does not constitute Agency policy. 
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Quantitative evidence of nonlinearity below the point of departure (POD), the 
ED 62

01  will never be available because the POD is chosen to be at the bottom end 
of the available dose-response data. ... EPA should give greater weight to 
knowledge about the mode of action and its impact on the shape of the 
dose-response relationship. (p. 178)  

The comment continues, with the committee implicitly acknowledging that there is no  

evidence arguing against linearity, but that the lack of evidence should not justify using the linear 

model. 

The committee considers that the absence of evidence that argues against linearity 
is not sufficient justification for adopting linear extrapolation, even over a dose 
range of one to two orders of magnitude or to the assumption of linearity through 
zero, which would not normally be applied to receptor-mediated effects.  (p. 178)  

In addition, the committee recommended that EPA explore both linear and nonlinear 

approaches to TCDD cancer assessment: 

On the whole, the committee concluded that the empirical evidence supports a 
nonlinear dose response below the ED01, while acknowledging that the possibility 
of a linear response cannot be completely ruled out. The Reassessment 
emphasizes the lack of such nonlinear models, hence its adoption of the approach 
of linear extrapolation below the POD level. Although this approach remains 
consistent with the cancer guidelines…., EPA should acknowledge the qualitative 
evidence of a nonlinear dose response in a more balanced way, continue to fill in 
the quantitative data gaps, and look for opportunities to incorporate mechanistic 
information as it becomes available. The committee recommends adopting both 
linear and nonlinear methods of risk characterization to account for the 
uncertainty of dose-response relationship shape below ED01 (p. 72). 

In this document, EPA has applied its own guidance on cancer risk assessment and 

adopted linearity (and an assumption of no threshold) as a health-protective default approach in 

the absence of sufficient evidence of MOA involving a threshold for all tumors resulting from  

TCDD exposures (volitional uncertainty).  (Note that the NAS report appears to view the 

absence of evidence as imposing a burden of proof on the linear model [cognitive uncertainty];  

see Sections 5.2.3.4.1.2 and 6.2 regarding the burden of proof.)  In addition, the NAS 

committee’s request to apply nonlinear methods for the cancer assessment is addressed, in 

62 Eeffective dose (ED) is the dose corresponding to a X% increase (in this case a 1%) in an adverse effect such as a 
concer endpoint, relative to the control response. 
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Section 5.2.3.4.1.4 of this document.  That evaluation describes the application of nonlinear 

methods to TCDD data and presents two illustrative examples of RfD development for 

carcinogenic effects: one based on tumorigenesis in experimental animals, and the other on 

hypothesized key events in TCDD’s MOAs for liver and lung tumors.   

The thrust of the NAS remarks regarding transparency, thoroughness and clarity in 

quantitative uncertainty analysis relevant to dose-response can be summarized as follows: 

1. The uncertainty of cancer risks due to dioxin exposure should be quantified. 

2. Dioxin cancer risk should be treated either as a threshold phenomenon, thus following the 
basic RfD methodology, or should be modeled using a sublinear dose-response function 
below the observed data, with the linear model used for comparison. 

3. The POD should be subjected to quantitative uncertainty analysis. 

A similar point of view has been indicated by others.63  Detailed suggestions regarding specific 

improvements for quantitative uncertainty analysis in the 2003 Reassessment are outlined in the 

next section and summarized in Section 6.5. 

6.4.  FEASIBILITY OF CONDUCTING A QUANTITATIVE UNCERTAINTY 
ANALYSIS FOR TCDD 

This section focuses on uncertainty analysis for TCDD dose response, which involves a 

range of issues as highlighted in Table 6-1.   

6.4.1.  Feasibility of Conducting a Quantitative Uncertainty Analysis under the RfD 
Methodology 

This discussion applies to all noncancer endpoints of TCDD, and to cancer endpoints 

insofar as they fall under the RfD methodology.  An RfD is obtained through the following steps: 

1. Choose a POD, then 

2. Apply uncertainty factors (UFs) to account for knowledge shortfalls. 

63For example, from Popp et al. (2006, 197074).  “Overall, the evidence indicates that (1) TCDD causes cancer via a  
receptor-mediated process; (2) this dose-response is non-linear; and (3) a threshold region exists for TCDD-induced 
cancer below which adverse effects are unlikely to occur.”  

This document is a draft for review purposes only and does not constitute Agency policy. 
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The method of uncertainty factors harkens back to the engineering practice of safety 

factors (Lehman and Fitzhugh, 1954, 003195). To illustrate, if the reference load for an 

engineered structure is X, then engineers might design the structure to withstand load 3X, using a 

safety factor of 3 to create a margin of safety.  If the structure functions in a corrosive 

environment, another factor could be multiplied to guarantee safety for that condition, and 

another factor could be applied for heat, another for vibrations, and so on.  The choice of values 

is simply based on good engineering practice, i.e., reflecting what has worked in the past.  

Although safety factors are still common in engineering, they are giving way to probabilistic 

design in many applications.  The reason is that compounding safety factors quickly leads to 

overdesigning.  Compounding safety margins for spaceflight systems may render them too heavy 

to fly. As our understanding of a system increases, it becomes possible to guarantee the requisite 

safety by leveraging our scientific understanding of the materials and processes.  That of course 

requires formulating clear probabilistic safety goals and developing the techniques to 

demonstrate compliance.  

The engineering community has never sought to account for uncertainty by treating 

safety factors as random variables and assigning them (marginal) distributions; such an approach 

would not counteract the overdesigning inherent in safety factors.  Many authors, including the 

recent national committee for Science and Decisions (NRC, 2009, 194810), have advocated just 

such a probabilistic approach to the apparent “overdesigning” of the RfD when multiple UFs are 

used in its derivation. 

The NAS committee that evaluated the 2003 Reassessment does not discuss how to 

perform uncertainty analysis.  But their call for substantial improvement in quantitative 

uncertainty analysis with TCDD falling under the RfD framework entails examining the 

feasibility of quantitative uncertainty analysis within this framework.  (Note that the EPA  

Integrated Risk Information System (IRIS) database uses uncertainty factors without 

probabilistic interpretations; some context for this is offered in Section 6.4.1.2.) 

6.4.1.1.  Feasibility of Conducting a Quantitative Uncertainty Analysis for the Point of 
Departure 

The POD plays a role in both the noncancer RfD methodology and the cancer 

dose-response methodology.  The POD can be selected from various options, such as a NOAEL 

This document is a draft for review purposes only and does not constitute Agency policy. 
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or LOAEL, a BMDL, or an EDx. The feasibility of quantitative uncertainty analysis for each of 

these three options is considered below.  

By definition, the NOAEL is the highest of the tested doses in a toxicological experiment 

that is judged not to have caused an adverse effect (with dose expressed as a dose rate, in 

mg/kg-day). A quantitative uncertainty analysis for a NOAEL or LOAEL encounters the 

following problem.  In an experiment involving a small, positive response, the probability of 

seeing no response can be calculated using a binomial model with the number of exposed 

animals and the observed number of responses.  However, in an experiment with no response, 

the probability of having observed a response cannot be calculated without assuming a response 

probability. Such an assumption could not be based on observed data.  The probability of a 

higher NOAEL or higher LOAEL can be computed, but not that of a lower NOAEL or LOAEL.  

In other words, the probability that an experiment with a positive result may have yielded a null 

response can be estimated, but not the probability that an experiment with a null response might 

have yielded a positive response.64 

64The probability associated  with a null response is often estimated by fitting a dose-response model to the data. 

 

In addressing uncertainty quantification for a BMDL or EDx, two questions must be 

distinguished regarding the response: 

1. What is the distribution of possible doses that causes an x% increase over background? 

2. What is the distribution for possible values of increase over background caused by a 
given dose? 

The BMD is defined as the dose that realizes a BMR.  It is an estimate from bioassay data 

that requires choosing a BMR and fitting a dose-response curve.  The BMR, being a choice, is 

not amenable to quantitative uncertainty analysis, but the choice can be motivated in a structured 

narrative.  The BMDL is the lower confidence limit on the dose that realizes a BMR (e.g., 95%) 

that can be found based on the uncertainty in the parameters of the dose-response relationship.  

Thus, the BMDL is addressed to the first question above, and represents in this case the 

95% lower confidence band of the distribution of possible doses causing an x% increase over 

background. In the standard approach, the uncertainty captured by the BMDL is sampling 

This document is a draft for review purposes only and does not constitute Agency policy. 
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uncertainty conditional on the truth of the dose-response model.  Different models might fit the 

data equally well yet lead to different BMDLs.   

The BMDL is also influenced by the constraints imposed on the parameter fitting.  

Suppose that the slope is expected to be greater than one, and that the maximum likelihood 

estimate of the slope is slightly greater than one.  Since the constraint is not binding, the 

constrained and unconstrained model would have the same Akaike Information Criterion and 

would be equivalent in this sense. However, computing the BMDL with the slope constraint can 

lead to very different values than without this constraint.  In the latter case, slope values less than 

one contribute to the uncertainty in the dose causing the BMR (see Cooke, 2009, 543763). 

The EDx can also be taken as a POD. It is similar in spirit to the BMD; however, as used 

here, the term EDx applies when the dose causing an x% extra risk over background has actually 

been observed, not estimated from a fitted dose-response model.65  The observations are subject 

to sample fluctuations, and if the experiment on which the EDx is based were repeated, different 

values might be found.  It is helpful to consider a numerical example.  Suppose a background 

response rate of 10% is established based on many observations of nonexposed individuals.  In a 

given experiment, involving say 100 individuals given dose d, 14 individuals responded. The 

percent increase x over background (extra risk) is found by solving:  

14/100 = 10/100 + x × 90/100, or x = 4.4%. 

We conclude that d = ED4.4. We may assume that if the experiment were repeated with 100 new 

individuals sampled independently from the whole population, the response would be given by a 

binomial distribution with parameters (14, 100).  The number of responses might be greater or 

smaller than four, there is a 16% chance of observing 10 or fewer responses.  The response to 

dose d would not be distinguished from the background in that case, and a higher dose would be 

used for the POD. 

The uncertainty analysis of EDx as the POD involves addressing the second question 

above, without a quantitative dose-response model.  A quantitative uncertainty analysis is 

hampered, however, by the possibility that dose d would produce a response less than or equal to 

65This definition of EDx is adopted to distinguish the modeled response (BMD) and the observed response (EDx), 
and it is more restrictive than usages common in the literature. 
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the background, in which case the POD is indeterminate―another experiment with a different 

dose would be chosen as the POD. A true quantitative uncertainty analysis of EDx as the POD 

would thus require a full bioassay experimental design, with binomial sampling of response rates 

at each dose level in the assay.  Absent that, quantitative uncertainty analysis is not possible.   

The interplay of choice and estimation ingredients in the POD depends on the type of  

POD. The main features of the above discussion are captured in Table 6-2.  This table notes that 

the BMDL captures the uncertainty caused by sampling fluctuations given that the dose-response 

model is true. Other methods are available to compute the BMDL using (1) model-independent, 

observable uncertainty; (2) nonparametric Bayesian dose-response models; or (3) Bayesian 

model averaging (Cooke, 2009, 543763). Only the EDx can be subject to a quantitative 

uncertainty analysis, and then only if a full bioassay data set is available.  

6.4.1.2. Feasibility of Conducting a Quantitative Uncertainty Analysis with Uncertainty 
Factors 

Uncertainty factors are chosen based on a structured narrative characterizing knowledge 

shortfalls involving the following issues: 

1. Interspecies extrapolation (UFA: from animal data to humans). 

2. Intraspecies extrapolation (UFH: to account for human interindividual variability, 
considering sensitive subgroups). 

3. LOAEL to NOAEL extrapolation (UFL: to estimate the dose corresponding to no adverse 
effect, from a reported LOAEL). 

4. Subchronic to chronic extrapolation (UFS: to estimate effects of chronic exposures, from 
a subchronic study). 

5. Database deficiency (UFD: to extrapolate from an incomplete data set, e.g., in terms of 
endpoints assessed or study design, i.e., from a poor to a sufficient or rich data context). 

The standard chronic RfD can represent a sensitive human (H) response to a toxic 

substance under chronic (C) exposure conditions.  Suppose a BMDL POD were based on animal 

(A) data from a subchronic (S) study. The database for that chemical could be rich (R), e.g., 

involving multiple (and at least sensitive) species/strains, both sexes, multiple life stages, with 

multiple endpoints observed under sound study designs.  Or the data could be poor (P), with 

limited measurements from only a subchronic animal study (ASP) forming the basis for 
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 ASPRfD =
UFA ×UFS ×UFD ×UFH 

(Eq. 6-1) 
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estimating a general reference value for humans (including sensitive subgroups) under chronic 

exposure conditions.  For that case, the UF method would be applied as follows: 

where UFA, UFS, UFD, and UFH are the uncertainty factors for extrapolating from animals to 

humans (UFA), subchronic to chronic exposure conditions (UFS), without adequate endpoint 

coverage (UFD), and considering sensitive human subpopulations (UFH). It is possible to assign 

distributions to the UFs in Eq. 6-1, and to perform a Monte Carlo analysis to produce a 

quantitative uncertainty distribution over the dose or value likely to be without appreciable risk 

to humans for chronic exposures.  Many authors have proposed such an approach,66 and the 

recent NRC (2009, 194810) report on science and decisions encourages EPA to move in this 

direction. 

The idea of using a Monte Carlo analysis to develop quantitative uncertainty distributions 

for the RfD is simple, but the data on which the UFs are based and the assumptions that would 

need to be made should be further explored.  For example, it is assumed that the extrapolation 

from subchronic to chronic exposure (UFS) is the same whether applied to animals or humans, 

and whether applied to sufficient (rich) or deficient (poor) data contexts.  Swartout et al. (1998, 

093460) noted “Within the current RfD methodology, UFS does not consider differences among 

species, endpoints, or severity of effects; the same factor is applied in all cases.”  In addition, due 

to the paucity of relevant human data, the same authors suggested the use of other endpoints as 

surrogates in estimating the extrapolation from animals to humans, UFA. Further, few data exist 

66There has been considerable work on giving a probabilistic interpretation of the UFs, including by Abdel-Rahman 
and Kadry (1995), Vermeire et al. (1999), Baird et al. (1996), Swartout et al. (1998, 093460), Slob and Pieters 
(1998, 087256), Evans and Baird (1998), Calabrese and Gilbert (1993), Calabrese and Baldwin (1995), Hattis et al. 
(2002, 548720), Kang et al. (2000, 548722), and Pekelis et al. (2003, 548723). These evaluations can be considered 
to frame what might be called a random chemical approach.  Several authors adduce properties based on log normal 
distributions.  Insightful studies by Kodell and Gaylor (1999;)(Gaylor and Kodell, 2000, 548724) suggest that 
uncertainty factors are independent log normal variables.  Combining uncertainty factors involves multiplying the 
median values, and combining the “error factors” according to the formula KS×H = exp[1.6449 × √(σS 

2 + σH 
2)], 

where σS 
2 
, σH 

2 are the variances of ln(UFS) and ln(UFH).  Thus UFS × UFH is a lognormal variable with Median(UFS 

× UFH) = Median(UFS) × Median(UFH), and 95th percentile given by Median(UFS × UFH) × KS × H. If US and UH 

each have an error factor or 10, then the error factor of UFS × UFH is not 100 but 25.95. Several authors suggest that 
multiplying uncertainty factors might over-protect.  Recent proposals from the National Research Council reflect the 
random chemical concept, and they inherit its problems (NRC, 2009, 194810). 

http://cfpub.epa.gov/ncea/hero/index.cfm?action=search.view&reference_id=194810�
http://cfpub.epa.gov/ncea/hero/index.cfm?action=search.view&reference_id=93460�


5 

10 

15 

20 

25 

30 

1 

2 

3 

4 

6 

7 

8 

9 

11 

12 

13 

14 

16 
17 

18 

19 

21 

22 

23 

24 

26 

27 

28 

29 

31 

 

 

 

 

in humans to accurately portray the interindividual variability represented by UFH. Much of the 

data gathered to date on distributions of UFs have aggregated across other extrapolations; that is, 

data from subchronic to chronic ratios are aggregated over different species and different data 

contexts. Finally, it may be noted that an important issue is the data on which empirical 

distributions of response ratios are based.  Brand et al. (1999, 007629; 2001, 543765) studied the 

sampling behavior of response ratios and raised concerns with regard to their informativeness.   

Detailed analyses of the data underlying a Monte Carlo uncertainty analysis of Eq. 6-1 

would afford the possibility of verifying at least some of the assumptions and numerical 

estimations such an analysis must make.  Even if the assumption that the same UFS is applicable 

for all species, endpoints, and effect severities is thought to be biological plausible, the question 

of whether a given set of chemicals reflects this assumption, and hence they are suitable for a 

Monte Carlo analysis of Eq. 6-1, can only be decided by data evaluation.  Data are the ultimate 

arbiter of whether quantitative uncertainty analysis with uncertainty factors, as currently 

envisioned, has sufficient evidentiary support.   

6.4.1.3. Uncertainty Reduction Using Quantitative Data for Species Extrapolation 

Expressing dose in units of exposure that are more closely related to target tissue than to 

contact with administered feed (or an environmental medium) can reduce uncertainty in 

extrapolations of dose, route or species. This concept underlies EPA’s establishment of the 

Inhalation Reference Concentration Methodology (U.S. EPA, 1994, 006488). Under this 

method, species differences in tissue exposure for inhalation toxicants serve as the basis for 

interspecies adjustments of dose.  Likewise, the International Programme on Chemical Safety 

(IPCS) has established guidance for chemical-specific adjustment factors (IPCS, 2005), which 

also uses a measure of internal exposure (dose) to normalize (e.g., make equivalent) the dose 

between species. Certain more recent IRIS values also reflect such an approach, with 

data-derived extrapolation factors replacing default adjustments.  Under such approaches, the 

relationship between external exposure and target tissue exposure is determined in each species, 

and the applied doses are normalized on the basis of the same level of the internal tissue 

exposure. One distinction between the two approaches is that the IPCS (2005) approach is 

based on the attainment of the same levels of the toxicant in the blood (the central compartment) 

rather than in the actual target tissue (a consideration based in part on the fact that typically the 
This document is a draft for review purposes only and does not constitute Agency policy. 
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only data available to evaluate a human toxicokinetic model will be venous blood 

concentrations, rather than concentrations in a responding tissue or organ).  Further, it has been 

shown that species differences in internal dosimetry are more a function of species differences 

in blood solubility than differences in tissue solubility―that is, once distributed to blood, 

species differences in tissue exposure are less likely to be based on species differences in tissue 

solubility. 

The approach to development of interspecies extrapolation factors for inter- and 

intraspecies extrapolation of effective dose for the oral RfD for dioxin, which is described in 

Sections 3 and 4 of this document, is in agreement with both of these approaches.  All tissues in 

the body are exposed to dioxin via the bloodstream. Even in instances where the specific target 

tissues for observed effects may be other than the tissue where the effect is observed (e.g., 

effects mediated through the endocrine system), this biologically-based approach remains valid 

and reduces uncertainty in dose extrapolation. The approach to extrapolation of dosimetry―on 

the basis of circulating levels of dioxin in blood―makes optimal use of human 

exposure-response data, human biomonitoring data, and toxicokinetic modeling to estimate 

equivalent exposures for humans and test species without requiring that the target tissue be 

conclusively identified.  The decision to base animal-to-human extrapolation on circulating 

levels of dioxin in blood, as predicted by a well-evaluated PBPK model, reduces some potential 

sources of uncertainty.  

6.4.1.4. Conclusion on Feasibility of Quantitative Uncertainty Analysis with the RfD 
Approach 

A quantitative uncertainty analysis of the POD is not feasible for PODs based on 

NOAELs or LOAELs. For the BMDL, such an analysis is not appropriate because the BMDL is 

already a quantile from an uncertainty distribution of the BMD.  However, this uncertainty 

distribution can be obtained in different ways that capture different aspects of uncertainty.  

Quantitative uncertainty analysis is feasible if the POD is based on the EDx (as defined above) 

and is supported by a full set of bioassay data.  A quantitative uncertainty analysis based on a 

probabilistic interpretation of uncertainty factors in their present form invokes strong 

assumptions.  The data on which the distributions of uncertainty factors are based could be used 

to check at least some of these assumptions.  
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6.4.2. Feasibility of Conducting a Quantitative Uncertainty Analysis for TCDD under the 
Dose-Response Methodology 

Quantitative uncertainty analysis starts with a mathematical model and seeks to quantify 

the uncertainty attending the use of this model.  Dose-response relations are mathematical 

models expressing the probability of response as a mathematical function of dose.  For several 

decades, the uncertainty attending the use of dose-response models has been an abiding concern 

in many sectors, including the chemical and nuclear industries as well as the public health sector.  

Given a set of animal bioassay data, quantifying dose-response uncertainty may be approached in 

different ways. The differences reflect different types of uncertainty that are captured.  A recent 

evaluation enumerates the following possible methodologies (Bussard et al., 2009, 543770): 

Benchmark Dose Modeling (BMD): Choose the ‘best’ model, and assess 
uncertainty assuming this model is true.  Supplemental results can compare 
estimates obtained with different models, and sensitivity analyses can investigate 
other modeling issues. 

Probabilistic Inversion with Isotonic Regression (PI-IR): Define 
model-independent ‘observational’ uncertainty, and look for a model that captures 
this uncertainty by assuming the selected model is true and providing for a 
distribution over its parameters. 

Non-Parametric Bayes (NPB): Choose a prior mean response (potency) 
curve (potentially a “non-informative prior”) and a precision parameter to express 
prior uncertainty over all increasing dose-response relations, and update this prior 
distribution with the bioassay data. 

Bayesian Model Averaging (BMA) (as considered here): Choose an 
initial set of models, and then estimate the parameters of each model with 
maximum likelihood.  Use classical methods to estimate parameter uncertainty, 
given the truth of the model.  Determine a probability weight for each model 
using the Bayes Information Criterion, and use these weights to average the model 
results. 

The first of the above methods involves standard classical statistical methods and 

captures sampling uncertainty conditional on the truth of the model used.  The other methods are 

“exotic” in the sense that they attempt to capture uncertainty that is not conditional on the truth 

of a given model. All have been subjected to peer review and published, but they do not enjoy 

the wide usage of the standard classical methods.  The Bayesian models involve subjective 

choices of prior distributions. Insofar as the final result is largely independent of the choice of 
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prior, these methods conform to the current starting point of focusing on data-driven methods 

and not appealing to structured expert judgment.  (Structured expert judgment can also be 

considered an exotic method; an explanation of this approach falls outside the scope of this 

report.)  

A quantitative uncertainty analysis of TCDD capturing uncertainty in extrapolating data 

from animal bioassays to human reference values together with consideration of epidemiological 

data from studies of workers (routine exposures) or the general public (including dietary 

exposures and those reflecting discrete poisonings or accidental releases) would raise many 

issues. The major issues are summarized below.  

6.4.2.1. Feasibility of Quantitatively Characterizing the Uncertainties Encountered when 
Determining Appropriate Types of Studies (Epidemiological, Animal, Both, and 
Other) 

The risk assessor must choose the data set(s) that will serve as a starting point for 

dose-response modeling.  With respect to TCDD, a wealth of animal bioassay data exist in the 

scientific literature, across species ranging from  rats, mice, guinea pigs, and hamsters to mink, 

dogs and monkeys, and a variety of tissues, organs, and systems.  In addition, a considerable 

amount of human data is available from clinical/case reports, accidental releases, and 

occupational exposures, including epidemiological data for several cohorts.  As detailed in 

Sections 2, 4 and 5, some of the main sources of uncertainty in the TCDD epidemiological data 

include the healthy worker effect, confounding and exposure misclassification.  Epidemiological 

data are usually attended with large uncertainties regarding the doses actually received by 

individuals. The difficulty in characterizing individual-level exposures largely stems from  

having limited internal measures of TCDD exposure, as biomonitoring data may only be 

available for one point in time or on a subset of the exposed population.  Although there is little 

direct evidence of strong confounding in the cohorts of TCDD and dioxin-like compounds, some 

of the confounders that have been evaluated in a few of the epidemiological studies include 

gender, body mass index, age, cigarette and alcohol consumption, and hair and eye color 

(Baccarelli et al., 2005, 197053; 2006, 197036; Eskenazi et al., 2002, 197168; 2002, 197164; 

Pereg et al., 2002, 199797). As discussed in Section 5 on TCDD carcinogenicity, an additional 

limitation of the epidemiological evidence includes the lack of organ specificity, as many of the 
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studies have shown associations between TCDD exposure and all-cause mortality.  With 

disagreement in the literature over the nature, scope, and quality of the epidemiological data for 

TCDD, given the lack of precedent for a multisite carcinogen without particular sites 

predominating, some have urged caution in the interpretation of the epidemiological data based 

on small relative risks Popp et al. (2006, 197074). 

Despite these uncertainties, the EPA Cancer Guidelines express a clear preference for 

epidemiological studies over animal data.  The question here is whether quantitative uncertainty 

analyses based on either a collection of bioassay data or on several epidemiological studies can 

be combined in some overall uncertainty assessment.  Diverse human studies are sometimes 

combined into a meta-analysis, and the issues arising in this regard are instructive.  A primary 

challenge of meta-analytical approaches is combining heterogeneous effects that may result from  

studies of different populations, study designs or analytical techniques.  The question of whether 

uncertainty arising from combining such different studies can be taken into account in 

quantitative uncertainty analysis is similar to that of accounting for uncertainty due to missing 

covariates in Cox regression (see Section 6.4.2.2).   

Existing standard statistical tools are insufficient to address this issue, as they quantify  

uncertainty in model parameters estimated from data.  However, exotic methods, such as 

Bayesian methods, probabilistic inversion, or structured expert judgment may be applicable.  

These methods can be applied when a quantitative model predicts other phenomena, even though 

these phenomena could not be used to estimate the model.  The question of whether such 

methods could remain sufficiently tethered to data, or whether structured expert judgment is 

unavoidable, is a subject for future research. 

6.4.2.2. Uncertainty in TCDD Exposure/Dose in Epidemiological Studies 

Uncertainties in epidemiological studies arise from a variety of study characteristics.  

There are many types of epidemiological study designs which determine the data structure, 

including intervention trials, case-control studies, cohort studies and cross-sectional studies.  A 

variety of mathematical models some of these can be used to analyze epidemiological data; some 

of these includes Cox proportional hazard, Poisson regression, linear and logistic regression.  

The model outputs are based on different measures of association such as rate ratios, risk ratios, 

odds ratios, and standardized mortality ratios (SMRs, ratio of observed to expected deaths).  
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Exposure uncertainties often concern back-casted exposures based on current serum lipid 

concentrations, estimated/self reported dietary habits, fish consumption, placenta lipid 

concentrations, and other measures. 

Uncertainty in exposure is often dealt with by coarsely grouping a cohort into exposed 

and unexposed groups. The output of such a study can be coarse grained in a similar way; 

instead of computing dose-dependent risk estimates, standard mortality ratios might be used to 

compare the exposed and unexposed groups.  Packages computing the outputs routinely produce 

confidence intervals that reflect sampling fluctuations (e.g., can indicate the potential for chance 

to explain the association), assuming truth of  the model.  Additional uncertainty could be 

factored in with exotic methods.  A significant issue in epidemiological studies is the effect of 

omitted covariates.  Omitted covariates in Cox regression will bias the estimates of effects of  

included covariates.  If the omitted covariates are independent of the included covariates, the bias 

is toward zero in absolute value (Bretagnolle and Huber-Carol, 1988, 543772); if the omitted 

covariates are not independent, little can be inferred. 

With regard to individual studies, it might be possible to identify specific opportunities 

for uncertainty quantification.  This is illustrated here using the study of Steenland et al. (2001, 

198589) of more than 3,500 male workers exposed to TCDD-contaminated products at eight 

U.S. chemical plants.  Each worker was assigned an exposure score based on an estimated level 

of contact with TCDD, the degree of TCDD contamination of product at each plant over time, 

and the fraction of a workday in contact with the product.  For 170 workers, the serum TCDD 

levels were also measured.  The serum levels were back-extrapolated to the last time of exposure 

using a constant biological half life, and regressed on the exposure scores.  This regression 

model was used to predict the dose in all workers, and predicted dose was correlated with cancer 

mortality. Figure 6-1 shows a scatter plot of back-casted versus predicted TCDD serum levels 

for the 170 workers on which the regression was based. 

Given a predicted TCDD level, the uncertainty on the back-casted TCDD value could be 

inferred from such data by various techniques.  A key question is whether the actual cancer 

mortalities among 170 back-casted workers are randomly placed in the conditional distribution 

given predicted TCDD. Imagine, in other words, that the mortalities among the 170 back-casts 

are colored red in Figure 6-1. At any given level of TCDD prediction, are the red points evenly 

distributed, or are they shifted to the right?  In principle, the correlation between mortality and 
This document is a draft for review purposes only and does not constitute Agency policy. 
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back-casted TCDD level, given the predicted level, could be estimated.  This amounts to 

estimating heteroscedasticity in the regression model.67  Then, for each of the 3,538 workers, 

given his predicted TCDD level, we could sample a back-casted TCDD level, appropriately 

correlating with mortality, and recompute the dose response analysis.  Repeating this many times 

we could build up a distribution for excess lifetime cancer mortality risk.   

It is instructive to step through similar issues with regard to biological half life, 

background and body fat. The Steenland et al. (2001, 197433) analysis assumed a constant 

TCDD biological half life (8.7 years).  A distribution over this half life could plausibly be 

developed from published sources.  Assuming this half life is constant for all workers, but 

uncertain (epistemic uncertainty), this distribution could easily supplement the previous 

distribution: first sample a half life (to be applied to all workers), then estimate the regression 

model for this half life, and sample back-casted TCDD levels given each worker’s exposure 

score, taking account of correlation with mortality.  This works if the half life uncertainty is 

epistemic.  However, since the half life is estimated from data, it is more reasonable to suppose 

that the half life varies from worker to worker (aleatoric uncertainty).  Here again the correlation 

with mortality must be taken into account, indeed it seems reasonable to suppose that the 

256 cancer deaths involved workers with longer half lives.  However, there is no way ex post of 

determining the biological half life in the deceased workers.   

The potential impact of uncertainty regarding background exposure and body fat is likely 

similar to the uncertainty of estimating the half life of TCDD.  Steenland et al. (2001, 197433) 

held the background level constant at the median level (6.1 ppt, range 2.0 to 19.7) for 

79 nonexposed workers from whom blood was also drawn (see also Section 6.4.2.4).  The full 

distribution of TCDD levels for these nonexposed workers could be used as well.  Is it 

reasonable to suppose that responsive workers (i.e., those exhibiting the response) have 

background levels that are sampled randomly from this distribution, or might they not plausibly 

come from the high end of the distribution?  The analysis also assumed a constant percentage of 

body fat (30%), whereas body fat percentage varies in the general population, e.g., for men this 

has been reported to range from 2 to 38% or more (see Footnote in Section 6.1.3.3).  The body 

67 Heteroscedasticity occurs when the variance of the dependent variable in a regression analysis varies across the 
data, violating the assumption of equal variance commonly used in many regression models. 
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fat distribution in the worker population could have been ascertained, but again the question 

arises, are the responsive workers sampled randomly from this distribution? 

These three factors, variable half life, variable background, and variable body fat 

percentage, might combine to make the effective dose level among the responsive workers 

significantly higher than would appear in a study that assumes these factors to be constant.  

However, such concerns cannot be addressed in a quantitative uncertainty analysis, unless cancer 

mortality can be correlated with these variables.  In an optimal study design, this information 

could be retrieved from the data.  However, in most observational epidemiological studies such 

data are not available, and it might be possible to estimate these correlations in some other 

defensible manner, in which case the effect of exposure uncertainty could be quantified and 

propagated. Such an analysis would involve substantial effort and should not be undertaken 

under assumptions that are themselves implausible.  Protocols for epidemiological studies do not 

currently require such uncertainty quantification.  In any event, Steenland et al. (2001, 197433) 

should be recognized for conscientiously identifying these key issues. 

6.4.2.3. Uncertainty in Toxicity Equivalence (TEQ) Exposures in Epidemiological Studies 
Toxicity equivalence factors (TEFs) are used to infer the health effects of dioxin-like 

compounds based on their relative potencies compared to TCDD.  These factors are not known 

with certainty, and the question arises whether uncertainty in TEFs can be incorporated into a 

quantitative uncertainty analysis.  The process of deriving TEFs applied by the World Health 

Organization (WHO, 2005, 198739) is described in Van den Berg et al. (2006, 543769). 

Distributions of relative potencies (REPs) were developed from the scientific literature, with 

preference for in vivo studies, as supplemented by in vitro studies.  An expert panel used a 

consensus process to select a TEF value for each congener, in half log steps “Thus, the TEF is a 

central value with a degree of uncertainty assumed to be at least ± half a log, which is one order 

of magnitude.  However, it should be realized that TEF assignments are usually within the 50th to 

75th percentile of the REP distribution, with a general inclination toward the 75th percentile in 

order to be health protective” (Van den Berg et al., 2006, 543769) (see Figure 6-2 of this 

document). 

The WHO considers the uncertainty in TEFs to span one order of magnitude (presumably 

log uniformly distributed).  It would be tempting to use the distributions in Figure 6-2 to quantify 
This document is a draft for review purposes only and does not constitute Agency policy. 
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uncertainty in the TEFs in a quantitative uncertainty analysis.  However, the issue of dependence 

in this case is daunting. For example, should values of 1,2,3,7,8,-pentachlorodibenzofuran and 

2,3,4,7,8-pentachlorodibenzofuran be sampled independently?  The choice of dependence 

structure will have a large effect.  As described by (Van den Berg et al., 2006, 543769), the 

differences in REPs reflect differences in dosing regimens, species, endpoints, mechanisms, and 

calculation methods.  In a quantitative uncertainty analysis one must insure that these are not 

double counted. 

Reasons for significant differences in REPs for the same  congener can be caused 
by the use of different dosing regimens  (acute vs. subchronic), different endpoints, 
species, and mechanisms  (e.g., tumor promotion caused by at least two different 
mechanisms  as for mono-ortho-substituted PCBs), as well as different  methods 
used for calculating REPs. Thus, different methodological  approaches used in 
different studies clearly provide uncertainties  when deriving and comparing REPs. 
If future study designs to  derive REPs were more standardized and similar, the 
variation  in REPs when using the same congener, endpoint, and species  might be 
expected to be smaller (Van den Berg et al., 2006, 543769). 

Although the TEFs themselves and the distributions underlying them are based on expert 

judgment, it is possible to incorporate these into a quantitative uncertainty analysis; however, it 

is not simply a matter of taking the distributions in Figure 6-2 to predict the results, with 

uncertainty, of exposure to dioxin-like compounds.  The issues of dependence and double 

counting must first be addressed.  Inasmuch as the distributions are the result of expert judgment, 

this would reasonably involve structured expert judgment as well. (Procedures for this type of 

assessment have been developed and applied, and it would entail a significant level of effort.)   

6.4.2.4. Uncertainty in Background Feed Exposures in Bioassays 
TCDD is not produced intentionally but rather is formed as a byproduct of volcano 

eruptions, forest fires, manufacturing of steel and certain chemicals (including some pesticides 

and paints), pulp and paper bleaching, exhaust emissions, and incineration.  It enters the food 

supply primarily via aerial transport and deposition of emissions, and it bioaccumulates in animal 

fat. In general, food of animal origin contributes to about 80% of the overall human exposure.  

For example, Schecter et al. (1997, 198396) measured dioxins in pooled food samples collected 

in 1995 from supermarkets across the United States.  Reported as parts per trillion (ppt) toxicity 
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equivalences (TEQs), fresh water fish had the highest level (1.43); followed by butter (1.07); 

hotdog/bologna (0.54); ocean fish (0.47); cheese (0.40); beef (0.38); eggs (0.34); ice cream 

(0.33); chicken (0.32); pork (0.32); milk (0.12); and vegetables, fruits, grains, and legumes 

(0.07). More recent exposure studies indicate dietary levels have decreased over time.  Values 

reported for the early 2000s by Lorber et al. (2009, 543766), in ppt TEQ, are: fish (0.33); beef 

(0.12); dairy, other than milk (0.079); eggs (0.06); pork (0.036); poultry (0.018); other meat 

(0.058); and milk (0.012).  

These results illustrate that a person’s dietary intake of dioxins depends on the relative 

intake of foods with high or low levels of contamination, and human background levels will vary 

accordingly.  The same applies to experimental animals in bioassays, although in those cases the 

background intake can in principle be controlled.  Some of the effects of TCDD and other AhR 

agonists in enhancing the early initiation stages of cancers are considered to occur as a result of 

prenatal exposures that are not included in the standard National Toxicology Program (NTP) 

bioassay protocol (Brown et al., 1998, 051311; Muto et al., 2001, 548713). Further, to enhance 

reproducibility and keep statistical fluctuations to a minimum, the standard NTP assays are 

deliberately run on groups of animals that are relatively uniform genetically, fed uniform diets, 

and have the minimum possible exposures to toxicants other than the agent(s) being tested.  This 

tends to reduce the potential for observing the consequences of potential interactive effects that 

might occur in the diverse human population with its variety of dietary and other exposures to a 

wide range of potentially interacting substances and conditions. 

A critical question is the extent to which the background exposure influences the 

dose-response curve, and how this background should be taken into account.  One idea, 

articulated in the recent NRC (2009, 194810) report on science and decisions, involves an 

“interacting background.”68  This can be implemented by computing a virtual dose B which, 

according to the selected dose-response model, would explain a chosen fraction of the 

background response. If the chosen model for dose δ is f(δ), the model can be adapted to 

68“Effects of exposures that add to background processes and background endogenous and exogenous exposures can 
lack a threshold if a baseline level of dysfunction occurs without the toxicant and the toxicant adds to or augments 
the background process. Thus, even small doses may have a relevant biologic effect.  That may be difficult to 
measure because of background noise in the system but may be addressed through dose-response modeling 
procedures” (NRC, 2009). 
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account for an interacting background by writing f*(δ) = f(δ + B) − f(B). This can alter the 

model’s behavior at zero dose. 

For example, if f(δ) = δn/(δn + EC50 
n), the derivative d(f)/d(δ) is nδn−1EC50 

n/(δn + EC50 
n)2 , 

which goes to zero as δ→0, if n > 1. However, replacing δ with (δ + B) evidently changes the 

derivative at zero to nBn−1EC50 
n/(Bn + EC50 

n). This model is not yet estimable from data, as we 

have no way of choosing from the available animal data the fraction of background response to 

be explained by the model when applied to humans (although judgments could be made if we 

had better information about the details of the processes that are involved in causing various 

human health effects).  However, as a conceptual model, it serves to remind us that the manner 

of accounting for background exposures can influence a model’s behavior in the low-dose 

region. (Note that sensitivity analyses can be done showing the consequences of assuming 

different amounts of interacting background within the context of a specific nonlinear model.) 

6.4.2.5. Feasibility of Quantifying the Uncertainties Encountered When Choosing Specific 
Studies and Subsets of Data (e.g., Species and Gender) 

Species, strain, gender, life stage, and other characteristics of experimental animals are 

selected for a given study based on previous knowledge (e.g., of the species sensitivity, 

availability of strains having little genetic variation for the endpoints in question, relevance of 

the MOA, and degree to which the endpoints are similar for humans).  Many other decisions are 

made in designing a bioassay study; will the animals be sacrificed at the termination of the study 

(if not a lifetime study), or will they be allowed to live out their natural lives?  What dosing 

regimen should be applied?  How will the animals be fed and handled?  Although such questions 

may engender uncertainty in the minds of the experimenters, and reviewers; such uncertainty is 

not amenable for quantitative uncertainty analysis unless and until there are quantitative models, 

with parameters estimable from data, that can predict the effect of these choices on the response 

function. 

6.4.2.6. Feasibility of Quantifying the Uncertainties Encountered when Choosing Specific 
Endpoints for Dose-Response Modeling 

Standard experimental protocols guide the selection of exposure/dosing conditions for a 

given bioassay, including the amount, delivery vehicle, route, timing, dosing frequency and 
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duration, and dose spacing. The goal is to find the dose range where the experimental animals 

begin to respond adversely, to help anchor the lower end of the dose-response relationship, and 

to avoid multiple experiments in which all or none of the animals respond.  A common 

recommendation is that the dose levels be chosen such that the increments in probability of 

response are roughly equal. Hence, the choice of endpoint, dose spacing, and number of animals 

should be made with these factors in mind.  Of particular importance is the number of animals at 

each dose level in relation to the choice of endpoint and probability of response.  Using more 

animals at the lower dose levels increases the probability of seeing some animals respond; on the 

other hand, it will give higher weight to the low-dose responses in model fitting and uncertainty 

quantification. Including many low-dose groups in a study with no expected response can 

produce a bias in the event of model mis-specification (see Text Box 6-1).  The conclusion with 

regard to the feasibility of this quantitative uncertainty analysis echoes that of the previous 

paragraph: such uncertainty is not amenable for quantitative analysis unless and until there are 

quantitative models, with parameters estimable from data, that predict the effect of these choices 

on the response function. 

6.4.2.7. Feasibility of Quantifying the Uncertainties Encountered when Choosing a Specific 
Dose Metric (Trade-Off between Confidence in Estimated Dose and Relevance of 
MOA) 

The concept of dose is not straightforward.  To review, the Cancer Guidelines provide the 

following taxonomy: 

• Exposure is contact of an agent with the outer boundary of an organism.  

• Exposure concentration is the concentration of a chemical in its transport or 
carrier medium at the point of contact.  

• Dose is the amount of a substance available for interaction with metabolic 
processes or biologically significant receptors after crossing the outer boundary of 
an organism.  

• Potential dose is the amount ingested, inhaled, or applied to the skin.  

• Applied dose is the amount of a substance presented to an absorption barrier and 
available for absorption (although not necessarily having yet crossed the outer 
boundary of the organism).  
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   NTP (2006a) Female Rat Tumor Incidence Data for Cholangiocarcinoma 

 Blood concentration (ng/kg) 2.56 5.69 9.79 16.57 29.70 
Number exposed 48 46 50 49 53 
Number responding 0 0 1 4 25 
Relative frequency 0 0 0.02 0.08 0.47 
 

 
  NTP (2006a) Female Rat Tumor Incidence Data for Cholangiocarcinoma: 

 Low-Dose Linear and Hill Models 
 Blood concentration (ng/kg)  2.56 5.69   9.79  16.57  29.70 

Number exposed 48 46 50 49 53 
Response probability: Linear Low Dose (LLD)  0.005 0.012 0.014 0.09 0.47 

 Response probability: Hill model 0.00009 0.0017 0.013 0.09 0.47 
Probability of cohort null response: LLD 0.77 0.58    
Probability of cohort null response: Hill 0.99 0.92    

Log Likelihood LLD 2.46   
Hill 2.16   

 

1 

2 

Text Box 6-1.  Model Mis-Specification and Maximum Likelihood  Estimation. 
The maximum likelihood estimate (MLE) is widely used in statistics because of its attractive properties: If the 

true model generating the data is from the class whose parameters are being estimated, then under regularity  
conditions, the expected MLE converges to the true  value, and its variance converges to zero.  The caveat against 
what is called  “mis-specification” is very important and easily overlooked.   An illustration can  be extracted from  
the NTP (2006a) data for female rat tumor incidence of cholangiocarcinoma, representative of the data  which 
persuaded the NAS committee that the cancer dose response for dioxin was “sublinear.”  

The Hill model with MLE in this case has zero slope at zero.  The default Linear Low Dose (LLD) model fits a 
Hill model to doses with  positive responses, but it extrapolates linearly from  the lowest observed  nonzero  response 
frequency.  Both models have the same two  parameters, but the parameter values of the Hill model used in the LLD 
model are different  from those in  Hill model fit to all doses, including doses with zero  response.  Although the null 
responses are expected  on the LLD model, the Hill model has greater log likelihood since it gives higher probability 
to the null responses (see below). 

Suppose, for the sake of illustration, that the data were generated  with the response probabilities from the LLD 
model.  The Hill model would be mis-specified in this case, as the model generating the data is not a Hill model.  
Because of the small cohort size, the probability of null responses is such that the Hill model has greater likelihood 
than the LLD model with probability (based on  bootstrapping) about 0.43, even though the latter, by construction, 
is the true model.  Averaging over many simulated  responses from the LLD model, the Hill model underestimates 
the response probabilities for doses 2.56 and 5.69  by factors of 7.5 and 2.1  respectively.  In the event of such mis­
specification, the bias in the Hill model would  be aggravated by including more 50-rat experiments with  doses 
lower than  2.56.  
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• Absorbed dose is the amount crossing a specific absorption barrier (e.g., the 
exchange boundaries of skin, lung, and digestive tract) through uptake processes.  

• Internal dose is a more general term, used without respect to specific absorption 
barriers or exchange boundaries. Delivered dose is the amount of the chemical 
available for interaction by any particular organ or cell 

Due to their greater causal proximity to the affected organs, using the absorbed dose or  

internal dose would yield statistically more powerful results and enable more precise predictions 

than potential dose. If it is not possible to measure these or they were not measured during the 

conduct of the study (as is commonly the case), then other available dose metrics, such as 

potential dose or exposure, are used. Due to toxicokinetic variability, different individuals 

receiving the same exposure may not have the same absorbed dose.  Hence, use of either 

exposure or exposure concentration adds variability to the predicted results.  The dose metric 

should be selected that (1) has the most proximate possible causal relation to the production of an 

adverse health endpoint, and (2) can be readily related to the units of (external) exposure that 

will be the basis for assessing human exposures. 

6.4.2.8.  Feasibility of Quantifying the Uncertainties Encountered When Choosing Model 
Type and Form 

The EPA (2009, 522927)draft white paper on probabilistic methods notes: “There is no 

consensus on any one well-accepted general methodology for dealing with model uncertainty, 

although there are various examples of efforts to do so.”  Model uncertainty was introduced in 

Section 6.1.3.4. Many statistical techniques are available to evaluate model adequacy or to 

choose a “best” model.  Although it is tempting to qualify such deliberations as “uncertainty that 

a model is true,” one must remember that all models, being idealizations, are false.  Ultimately, 

one is interested in uncertainty with regard to observable phenomena, not with regard to models.  

Models are merely tools for describing the phenomena.  Nonetheless, the choice of a model 

constrains the ways in which uncertainty can be represented, so the question is how to deal with 

these constraints. A recent study of uncertainty modeling in dose response (Cooke, 2009, 

543763) addresses precisely this issue and provides technical details to frame possible options.  

Before exploring exotic approaches to model uncertainty (i.e., those not yet widely used 

in dose-response analyses), one feature in the standard statistical treatment of uncertainty must 
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be appreciated. Consider a model based on experimental data, typically bioassay data, in which 

a certain number of study subjects are exposed to varying doses of a test substance, and in which 

the numbers of subjects exhibiting a response are tallied.  Values for the parameters in the model 

are chosen by the principle of maximal likelihood: those values are chosen which render the data 

as likely as possible.  According to standard practice, a model is chosen that best fits the data 

according to one of the accepted criteria, such as reduced R2, or the Akaike Information 

Criterion. There might be many incompatible models that are nearly as good.   

One can ask the following: If the experiments on which the model is based were repeated, 

sampling the same number of experimental subjects from the distribution posited by the model, 

how much could our parameter estimates change?  This is described by a joint distribution over 

the model’s parameters, which captures sampling uncertainty under the assumption that the 

model is true.  Now, all models are false, and as our sample sizes grow the lack of fit in the 

model becomes increasingly apparent.  At the same time, the sample fluctuations in parameter 

estimates―assuming the model is true―become smaller and smaller.  In very large 

epidemiological studies, standard statistical methods can produce razor-thin confidence bands in 

this way, which fail to capture experts’ uncertainty regarding observable phenomena.69 

The exotic methods sketched in the beginning of Section 6.4.2 may be viewed as attempts 

to deal with this feature. Probabilistic inversion methods were deployed on a large scale in the 

joint U.S. NRC-EU uncertainty analyses noted in Section 6.1.  Distributions over model 

parameters are intended to capture an antecedently defined uncertainty over observable 

phenomena predicted by the model.  This method was applied in dispersion and deposition 

modeling and further environmental transport models (including uptake) for radionuclides.  In 

most cases, the observable uncertainty was based on structured expert judgment, but it has also 

been based on binomial uncertainty in bioassay studies.  A potential drawback is that it may not 

prove possible to capture the observable uncertainty in this way with a classically best-fitting 

model, and new models may be required.   

Nonparametric Bayesian methods arose in the biomedical and reliability fields.  They 

start with a prior distribution over all nondecreasing dose-response functions, and update these 

69See, for example, Tuomisto et al. (2008, 548715, Table 6) for a comparison of experts’ uncertainty in health 
effects of fine particulates with uncertainties derived from sampling uncertainty from large epidemiological studies. 
Although the experts generally agree with the studies’ central estimates, their uncertainty bands are often much 
wider than those surrounding the published estimates.  
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with observations from a bioassay.  No further assumptions regarding parametric form are 

introduced, but the prior distribution remains important for doses outside the range of 

observations. Bayesian model averaging starts with a prior distribution over a set of candidate 

models, and updates this distribution with bioassay data.  The method is flexible and intuitive, 

though attenuation of the effect of the prior on the posterior must be verified.   

All these approaches represent attempts to capture “extramodel uncertainty,” that is, 

uncertainty that is not conditional on the truth of the model.  This is an active research area, and 

improvements in methods for capturing extramodel uncertainty in quantitative uncertainty 

analysis are anticipated.  A major effort with regard to TCDD dose-response would be indicated 

when the strengths and weakness of the exotic methods are well understood. 

6.4.2.9.  Threshold MOA for Cancer 

The NAS committee avers that knowledge of the AhR binding MOA implies that there is 

a response threshold for TCDD cancer induction.  The differences between individual and 

population thresholds are not discussed, but the following two possibilities are distinguishable: 

1. The threshold is the same for each individual; since human variability in AhR binding 
affinity is rather large (see Section 5.2.3.3), this entails that the threshold is not affected 
by the binding affinity. 

2. The threshold varies across individuals and is related to the individual AhR binding 
affinity. 

These two positions are different.  As shown in Section 5.2.3 it is quite possible that each 

individual in a population has a threshold, whereas the population dose-response relation is 

linear.  Because the NAS committee does not distinguish which of these positions it holds, the 

feasibility of quantitative uncertainty analysis is examined here for both.  

i. Quantitative uncertainty analysis concerns a mathematical model.  In case (1), this model 
would show how the existence of the AhR binding would induce a threshold, 
independently of the strength of the binding.  Assessing the feasibility of quantitative 
uncertainty analysis must await the elaboration of such a model. 

ii. In case (2), it must be shown that the distribution of thresholds, and the dose-response 
function above the threshold, are able to induce a population “zero slope at zero dose” 
(ZS@Z) model.  Recall, the burden of proof is on this (ZS@Z) model.  Scoping the 
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population variability with regard to AhR-mediated mechanisms in general, and dioxin 
sensitivity in particular, is an active area of research.  It involves phenotyping human 
AhR-mediated responsiveness and relating this to polymorphisms in the human 
population. Harper et al. (2002, 198124) report that a 10-fold variation in binding 
affinity of AhR for TCDD in human placental tissue did not reveal any polymorphisms, 
suggesting that the relation between phenotypical and genotypical variation is tenuous.  
Tuomisto et al. (1999, 548717) demonstrate large variations in efficacy in two rat strains 
whose binding affinity is similar (Long-Evans, Kd = 3.4, Han/Wistar, Kd = 3.9 (as also 
discussed in Connor and Aylward, 2006, 197632)), and they also show that this variation 
is endpoint-specific. The responses in both strains are similar for cytochrome P450 
(CYP)1A1 induction, but very dissimilar for thymus atrophy, serum bilirubin, and 
mortality. Toide et al., (2003, 548792) suggest that common biochemical measures of 
EROD activity might be mediated by CYP1B1 and CYP1A2.  The differences in serum 
bilirubin at doses around 10 µg/kg are about a factor of 30.  Han/Wistar rats seldom die at 
this dose, while mortality of Long Evans rats is about 50%.  The mechanisms are not 
understood. 

Although the mass action dose-response model does not have a threshold, it is possible 

that certain enzymes block the receptor binding, and until these are overwhelmed, no response 

occurs. The availability of such enzymes may vary from individual to individual, and may or 

may not covary with the dissociation constant, Kd. Pursuing these lines of research may result in 

a convincing demonstration of a population (ZS@Z) model.  Such a model would express the 

individual threshold in terms of parameters that could be estimated with uncertainty from the 

data. 

6.4.2.10.Feasibility of Quantifying the Uncertainties Encountered when Selecting the BMR 
The NAS committee explicitly requested that the uncertainty attending the choice of a  

BMR be quantified. Although selecting relevant alternative values for the BMR may provide 

information of interest, it does not constitute a quantitative analysis of uncertainty.  The 

alternative values must be sampled from some uncertainty distribution.  Since this concerns 

volitional uncertainty, there is no underlying distribution from which to sample, unless the 

choice of BMR is related to some claim about the state of the world.  

However, in response to the NAS concerns, this document provides some limited 

quantitative comparisons of BMR choices.  BMDs, BMDLs and OSFs from the animal cancer 

bioassay benchmark dose modeling assuming 1, 5, and 10% extra risk are compared in units of 

blood concentrations and human equivalent doses in Tables 5-18 and 5-19, respectively.  In 
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addition, MLE and upper bound slope factor estimates based on Cheng et al. (2006, 523122) are 

presented (see Tables 5-3 and 5-4). For the noncancer effects, key animal study PODs 

(ng/kg-day) are shown based on different dose metrics: administered dose, first-order body 

burden HED, and blood concentration (see Tables 4-3 and 4-4).   

6.5.  CONCLUSIONS REGARDING THE FEASIBILITY OF QUANTITATIVE 
UNCERTAINTY ANALYSIS 

In this section the main conclusions regarding the feasibility of quantitative uncertainty 

analysis are summarized in relation to specific suggestions made by the NAS committee (see 

Section 6.5.1). Following this, a suggested research agenda for moving forward in this area is 

provided (see Section 6.5.2). 

6.5.1. Summary of NAS Suggestions and Responses 
On page 130 of their report (NAS, 2006, 198441), NAS makes specific suggestions 

regarding uncertainty quantification.  These are reformatted and presented in italics below.  

Following each suggestion, a summary of the discussion in this section is given, with reference 

to the section in which it is addressed. 

EPA should have addressed quantitatively the following sources of uncertainty:  

• Basis for risk quantification: 

1. bioassay data, 

2. occupational cohort data. 

Response: (1) Classical statistical methods yield distributions on model parameters 
which reflect sample fluctuations, assuming that the model is true.  This type of 
uncertainty is taken into account in the BMDL.  Exotic methods can account for 
uncertainty which is not conditional on the truth of a model, at least for bioassay data 
(see Section 6.4.2). (2) For epidemiological data, the dose reconstruction often involves 
assumptions which may support data driven uncertainty analysis, if sufficient data can 
be retrieved. Examples discussed above include back-casted TCDD level, biological 
half life, body fat and background (see Section 6.4.2.2).  Uncertainty in the choice of 
bioassay data sets or choice of occupational cohort data sets is volitional, and is not 
quantified by sampling an input distribution.  To be amenable for quantitative 
uncertainty analysis, the choice must be linked to a statement about the state of the 
world (see Section 6.1.1). 
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• Epidemiology data to use: 

1. risk estimate developed with data aggregated from all suitable studies,  

2. risk estimate or estimates developed using each study individually.   

• Factors affecting extrapolation from occupational to general population cohorts, 
including differences in baseline health status, age distribution, the healthy worker 
survivor effect, and background exposures. 

Response: (1) Quantitative uncertainty analysis based on meta-analysis data poses 
challenges owing to differences in study protocols.  Exotic methods might take us further, 
the question is whether the restriction to data driven methods (as opposed to expert 
judgment or Bayesian methods) could be maintained (see Sections 6.4.2.2 and 6.4.2.3).  
(2) If the general population is characterized by distributions over known confounders 
whose coefficients are estimated from the epidemiological studies, then uncertainty over 
these coefficients can be extracted with the methods mentioned in Section 6.4.2.1.  
Uncertainty due to missing covariates is intractable for data driven uncertainty analysis 
(see Section 6.4.2.2). 

• Bioassay data to use: 

1. risk estimate developed with the single data set implying the greatest risk (that is, 
single study, tumor site, gender), 

2. risk estimate developed with multiple data sets satisfying an a priori set of 
selection criteria.  

Response: (1) Uncertainty in choice of data sets is volitional and is not quantified by 
sampling an input distribution.  To be amenable for quantitative uncertainty analysis the 
choice must be linked to a statement about the state of the world (see Section 6.1.1).  
(2) The issue here is similar to the meta-analysis addressed in (2.a). 

• Dose-response model: 

1. linear dose response, 

2. nonlinear dose.  

Response: (1) When low dose extrapolation is done using a linear model by default, the 
uncertainty is volitional.  To be amenable for quantitative uncertainty analysis, the choice 
must be linked to a statement about the state of the world (see Section 6.1.1).  The EDx as 
POD for the linear extrapolation can be subjected to quantitative uncertainty analysis, if 
based on sufficient bioassay data. (2) With respect to nonlinear dose response, it is 
possible that human thresholds exist, and that the distribution of thresholds can be 
characterized in the human population.  In as much as the mechanisms for this are not yet 
understood, there is no quantitative model expressing threshold as a function of 
parameters which could be estimated, with uncertainty, from data.  This currently limits 
the application of uncertainty quantification (see Section 6.4.2.9). 
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• Dose metric: 

1. average daily intake, 

2. area under the blood concentration-time curve,  

3. lifetime average body burden, 

4. peak body burden, 

5. other. 

Response: (1-5) The dose metric is chosen to maximize causal proximity to the endpoint, 
while maintaining the link to measured exposure (see Section 6.4.2.7).  There may be 
uncertainty with regard to which metric is optimal.  If an inappropriate metric is chosen  
in a bioassay study, this would be expressed in noisier responses which would tend to 
suppress the dependence of endpoint on dose.  A data driven quantitative uncertainty 
analysis of dose metric would require a mathematical model expressing endpoints as a 
function, inter alia, of dose metric, with parameters estimated from data.   

• Dose metric―biological measure: 

1. free dioxin,  

2. bound dioxin. 

Response: (1−2) The issue is whether all TCDD available for AhR binding, or only the 
bound TCDD, should be used as a dose metric.  Binding affinity is determined by more  
factors than genetic polymorphisms and these other factors are poorly understood (see 
Section 6.4.2.9). A quantitative uncertainty analysis must await the formulation of a 
quantitative model expressing binding affinity in terms of parameters which can be 
estimated from data. 

• POD: 

1. ED10, 

2. ED05, 

3. ED01 

Response: (1−3) Uncertainty in choosing a POD is volitional.  Uncertainty in the value 
of an EDx can be quantified in a data driven manner if sufficient bioassay data is at hand 
(see Section 6.4.1.1). 

• Value from ED distribution to use: 

1. ED, 

2. lower confidence bound value for the ED (LED),  

3. upper confidence bound for the ED (UED). 
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Response: (1−3) Given that uncertainty on the POD is quantified, a distribution of the 
slopes of a linear low dose extrapolation is readily derived, and hence a distribution of a 
risk specific dose.  

• Where alternative assumptions or methodologies could not be ruled out as implausible or 
unreasonable, EPA could have estimated the corresponding risks and reported the 
impact of these alternatives on the risk assessment results.  The potential impacts of four 
sources of uncertainty are discussed below.  

1. The full range of plausible parameter values for the dose-response functions used 
to characterize the dose-response relationship for the three occupational cohort 
studies selected by EPA (Becher et al., 1998, 197173; Ott and Zober, 1996, 
198408; Steenland et al., 2001, 197433)).   

2. Use of other points of departure, not just the ED01 (or LED01), to develop a CSF.  

3. Alternative dose-response functional forms as well as goodness of fit of all 
models, especially at low doses.   

4. Uncertainty introduced by estimation of occupational exposures.  
 

Response: (1) The study of Steenland et al. (2001, 197433) was selected to illustrate the 
possibilities and limitations of quantitative uncertainty analysis for this type of study (see 
Section 6.4.2.2).  (2) The possibilities for uncertainty quantification with regard to the 
POD are discussed in Section 6.4.1.1 and in the POD bullet above.  (3) Goodness of fit at 
any measured dose is evaluated in standard packages.  There may be different models 
with comparable goodness of fit at observed doses which differ strongly at doses outside 
the measured range.  Extra model uncertainty, that is, uncertainty which is not conditional 
on the truth of any given model, is addressed by the exotic methods (see Section 6.4.2).  
(4) The feasibility of quantifying uncertainty in occupational exposure is study specific.  
The example of Steenland et al. (2001, 197433) was discussed in some detail (see 
Section 6.4.2.2).  In general, the problem is not so much quantifying the exposure 
uncertainty, but in quantifying the dependence between the endpoints and the exposure 
uncertainty.   
 

6.5.2. How Forward?  Beyond RfDs and Cancer Slope Factors to Development of 
Predictive Human Dose-Response Functions 

Uncertainty quantification is an emerging area in science.  There are many examples of 

highly vetted and peer-reviewed uncertainty analyses based on structured expert judgment.  

Under this process, experts in effect synthesize a wide diversity of information in generating 

their subjective probability distributions.  Where considerable data exist for an environmental 

pollutant, such as for the well-studied TCDD, it is natural to ask whether these extensive data can 

be leveraged more directly in uncertainty quantification.  This is an area where research could be 

focused.  The requisite knowledge does not yet exist, but there are promising lines of attack.  It is 
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therefore not a question of convening blue-ribbon panels to reveal the proper approach; instead 

multiple approaches should be encouraged, to try out new ideas and share experiences.   

An important idea that has been pioneered in Europe is to organize bench-test exercises 

where different approaches are applied to a common problem.  This focuses the discussion on 

real issues and builds a community of capable practitioners.  Such initiatives have proven much 

more productive than simply supporting individual researchers to explore their ideas. 

Areas for which bench-test exercises might be appropriate include: 

 

• Testing “exotic” methods for capturing model uncertainty; 

• Combining bioassay and epidemiological data for uncertainty quantification; 

• Assessing applicability of structured expert judgment, e.g., for low-dose extrapolation; 
and 

• Conducting dependence modeling, dependence inference, and dependence elicitation 
(such as with regard to TEFs). 
 

Looking beyond compounds for which considerable data exist, there will always be a 

need to evaluate new substances.  The target will be a simple method that: 

 

1. Can yield predictions of toxicological indicators with uncertainty via a valid probabilistic 
mechanism; 

2. Could evolve from approaches based on similarities (such as a random chemical model) 
under which the new substance could be seen as a random sample from a reference 
distribution of chemicals considered sufficiently similar, e.g., in terms of structure, 
physicochemical properties, and biological activity (potency); and 

3. Is consistent with current risk assessment science and approaches, peer-reviewed and 
accepted as EPA policy.   

 

This last feature is important because advancements in risk assessment approaches should 

extend logically from current methodology based on data analysis and scientific methods.  For 

example, the discussion surrounding uncertainty factors suggests that a probabilistically valid 

inference system could substantially differ from the current system.  Nonetheless, to meld with 

current practice, it must initialize on the current system and allow this system to evolve in a 

measured fashion.  Ideally, methodological changes should be undertaken in a forum where such 

issues are being addressed and not within an assessment of a single chemical.   
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Additional research topics relevant to dioxin that could further inform health assessments 

include population variability of biokinetic constants, threshold mechanisms for the mass action 

model, and low-frequency polymorphisms (e.g., less than 1%).  Further data and improved 

methodologies in these areas, combined with developments illustrated elsewhere in this report, 

will help reduce uncertainties and strengthen our understanding of potential health implications 

of environmental contaminants. 
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Table 6-1.  Key sources of uncertainty 
 

Selection of endpoint and of species/strain, gender, life stage, other subject characteristics 
 - critical effect  
 - sensitivity (e.g., species, life stage) 
 - human relevance  
Selection of key study(ies): human data and bioassays (strength, inclusion criteria) 
 - epidemiological studies, clinical/case reports (exposure estimate) 
 - adequacy of study design, statistical power (exposure term, histopathology) 
 - human relevance of bioassays (TK, MOA, endpoint) 
 - data uncertainty, confidence in data; database deficiencies  
Use of TK, dosimetry; body burden; species differences, cross-species extrapolation 
 - bioavailability, dose dependence  
 - half life, life stage, body fat, other compartments, age, other factors 
 - body burden (peak, steady state, lifetime average) 
 - physiologically-based pharmacokinetic (PBPK) modeling 
 - scaling (human equivalents), adjustments (default and nondefault; with TD) 
Selection of dose metric 
 - intake (averaging time)  
 - background (what place on the dose-response curve)  
 - free vs. receptor-bound TCDD 
 - tissue-specific concentration 
 - lipid-normalized level 
 Selection of POD 
 - selection (e.g., NOAEL/LOAEL, BMDL, ED01, 05, 10) 
 - derivation method (e.g., BMD) 
 - choice of model form (e.g., Hill, Weibull) 
 - statistical uncertainty at/confidence in POD 
Selection of dose-response model (e.g., biologically based, multistage) and of BMR  
 - biological plausibility, MOA 
 - model type and form, alternative functional forms 
 - range of plausible parameter values 
 - goodness of fit, especially at low doses 
Selection of low-dose extrapolation approach  
 - linear/nonlinear 
 - threshold/nonthreshold 
Human population variability  
 - subpopulations (e.g., occupational, general public, sensitive groups) 
 - polymorphisms 
 - life stage, other features 
 - individual vs. population threshold 
Characterization of risk/effect  
 - adversity of effect (vs. in normal range of variation and adaptation) 
 - uncertainty factors (TK; TD; chemical-specific vs. default; justification) 
 - consistency of methods for endpoints with common MOA 
 - back-extrapolation from occupational data 
 - MOE, RfD; beyond a point estimate for SF  

PBPK = physiologically-based pharmacokinetic; SF = slope factor; TD = toxicodynamic; 
TK = toxicokinetic.  (Other acronyms are as defined elsewhere within this section.)

3 
4 
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Table 6-2.  PODs and amenability for uncertainty quantification 
 

POD Data profile Choice Uncertainty quantification 

LOAEL Experimental dose Choose set of No 
level from set of exposure-response 
exposure-response data measurements 

NOAEL Experimental dose Choose set of No 
level from set of exposure-response 
exposure-response data measurements 

BMDL Estimate from  Choose BMR, choose No, the BMDL is a quantile of 
bioassay data dose-response relation an uncertainty distribution 

assuming that the 
dose-response model is true   

EDx Estimate from set of Choose bioassay Yes, if full bioassay data are 
exposure-response data experiments to estimate EDx available 

 3 
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Figure 6-1.  Back-casted vs. predicted TCDD serum levels for a worker 
subset.  
 
Source: Steenland et al. (2001, 197433). 9 
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Figure 6-2.  Distribution of in vivo unweighted REP values in the 2004 
database.  
 
Source: Van den Berg et al. (2006, 543769), reprinted with permission from Haws 
et al. (2006, 198416). 
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