Ozone is a gas found in different parts of the atmosphere. Ozone in the upper atmosphere, or stratosphere, helps protect the Earth from the sun’s harmful rays. (The Ozone Levels over North America indicator describes trends in stratospheric ozone levels over the U.S.) In the lowest level of the atmosphere, the troposphere, ozone is harmful to both human health and the environment. For this reason, ozone is often described as being “good up high and bad nearby” (U.S. EPA, 2003a). Although some industrial sources release ozone directly into the environment, most ground-level ozone forms in the air from chemical reactions involving nitrogen oxides (NOx), volatile organic compounds (VOCs), and sunlight. Ozone levels are typically highest during the afternoon hours of the summer months, when the influence of direct sunlight is the greatest. These highest levels occur during what is known as the “ozone season,” which typically occurs from May 1 to September 30 but whose time frame varies by state (U.S. EPA, 2003b).

Variations in weather conditions play an important role in determining ozone levels. Daily temperatures, relative humidity, and wind speed can affect ozone levels. In general, warm dry weather is more conducive to ozone formation than cool wet weather. Wind can affect both the location and concentration of ozone pollution. NOx and VOC emissions can travel hundreds of miles on air currents, forming ozone far from the original emissions sources. Ozone also can travel long distances, affecting areas far downwind. High winds tend to disperse pollutants and can dilute ozone concentrations. However, stagnant conditions or light winds allow pollution levels to build up and become more concentrated.

Inhalation exposure to ozone has been linked to numerous respiratory health effects, including acute reversible decrements in lung function, airway inflammation, cough, and pain when taking a deep breath. Ozone exposure can aggravate lung diseases such as asthma, leading to increased medication use and increased hospital admission and visits to emergency rooms. In addition, evidence is highly suggestive that ozone directly or indirectly contributes to non-accidental and cardiopulmonary-related mortality, but the underlying mechanisms by which such effects occur have not been fully established (U.S. EPA, 2006). Although people with lung disease are most susceptible to the effects of ozone, even healthy people who are active outdoors can suffer from ozone-related health effects. Further, evidence suggests that older adults (more than 65 years old) appear to be at excess risk of ozone-related mortality or hospitalization (U.S. EPA, 2006). Elevated concentrations of ozone can also affect vegetation and ecosystems, as the Ozone Injury to Forest Plants indicator describes further (U.S. EPA, 2006).

This indicator presents ambient ground-level ozone concentrations in parts per million (ppm) from 1978 to 2007. Data are shown for 8-hour averaging times, based on continuous ozone monitoring data and consistent with this pollutant’s National Ambient Air Quality Standard (NAAQS). The 8-hour standard is indicative of exposures occurring over a sustained period of time (e.g., an outdoor worker’s exposure over the course of a work day). Trends for this indicator represent 194 sites in 148 counties nationwide that have data for the period of record in the State and Local Air Monitoring Stations network or by other special purpose monitors. The indicator also displays trends in ozone measurements in each EPA Region. This indicator’s exhibits display the corresponding 2008 NAAQS as a point of reference, but the fact that the national or regional

\begin{exhibit}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Averaging period & 78-80 & 83-85 & 88-90 & 93-95 & 98-00 & 03-05 \\
\hline
Average of fourth highest daily maximum 8-hour concentrations (ppm) & 0.08 & 0.10 & 0.12 & 0.14 & 0.16 & 0.18 \\
\hline
Number of trend sites above NAAQS (0.075 ppm) & 10% & 20% & 30% & 40% & 50% & 60% \\
\hline
\end{tabular}
\end{table}

\begin{itemize}
\item **Coverage:** 194 monitoring sites in 148 counties nationwide (out of a total of 1,208 sites measuring ozone in 2007) that have sufficient data to assess ozone trends since 1978.
\item **Data source:** U.S. EPA, 2008b
\end{itemize}
\end{exhibit}
consistently with the 8-hour ozone standard. The daily maximum 8-hour concentration in each year is used to assess compliance with the ozone standards. For the 8-hour ozone indicator, making it easier to see the long-term trend.

This statistic is not displayed for each EPA Region. What the Data Show

Between the 1978–1980 and 2005–2007 averaging periods, nationwide fourth highest daily maximum 8-hour ambient ozone concentrations decreased by 23 percent (Exhibit 2–13, panel A). Although the 8-hour ozone levels in 2005–2007 were the third lowest on record and the number of trend sites measuring ozone concentrations above the level of the 2008 8-hour NAAQS decreased by 20 percent over the time frame covered in this indicator (Exhibit 2–13, panel B), ambient air monitoring data collected up through 2007 and reported to EPA’s Air Quality System indicate that approximately 144.8 million people lived in counties where 8-hour average ozone concentrations are above the level of the primary ozone NAAQS (U.S. EPA, 2008a). Among the ten EPA Regions, the most substantial declines in 8 hour levels were observed in EPA Regions that originally had the highest ozone concentrations (EPA Regions 1 and 9) (Exhibit 2–14). Over nearly the entire period of record, Region 10 showed the lowest Regional ozone levels.

Also shown in Exhibit 2–13 (panel A) are the 90th and 10th percentiles based on the distribution of statistics at the monitoring sites. This provides additional graphical representation of the variability of measured concentrations across the monitoring sites for a given 3-year period. Thus, the graphic displays the concentration range where 80 percent of measured values occurred for that 3-year period.

In summary, despite reductions in ambient concentrations of ozone over the past quarter century and decreases in the emissions of ozone precursors since 1990 (the Nitrogen Oxides Emissions indicator; the VOC Emissions indicator), ozone remains one of the most persistent and ubiquitous air pollution issues in the U.S.

### Indicator Limitations

- Short-term trends in ozone concentrations are often highly dependent on meteorological conditions. This complicates efforts to interpret data for any given year. Air quality trends over the longer term are far less likely to be influenced by unusual meteorological conditions.
- Because most of the monitoring sites are located in urban areas, the trends might not accurately reflect conditions outside the immediate urban monitoring areas.
- Because of the relatively small number of trend sites in some EPA Regions, the regional trends are subject to greater uncertainty than the national trends. Some EPA Regions with low average concentrations may include areas with high local concentrations, and vice versa.
- To ensure that long-term trends are based on a consistent set of monitoring sites, selection criteria were applied to identify the subset of ozone monitoring sites with sufficient data to assess trends since 1978. Monitoring sites without sufficient data are not included in the trend analysis. Some excluded monitoring sites reported ozone concentrations above the level of the ozone standard over the time frame covered by this indicator. In 2007, for example, more than 500 monitoring sites (in addition to the trend sites shown in Exhibit 2–13, panel B) recorded ozone concentrations above the level of the 2008 NAAQS, but did not have sufficient long-term data to be included in this indicator.

---


<table>
<thead>
<tr>
<th>Averaging period</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
<th>R10</th>
<th>Nat'l</th>
</tr>
</thead>
<tbody>
<tr>
<td>'78-'80</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.075</td>
</tr>
<tr>
<td>'83-'85</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.075</td>
</tr>
<tr>
<td>'88-'90</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.075</td>
</tr>
<tr>
<td>'93-'95</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.075</td>
</tr>
<tr>
<td>'98-'00</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.075</td>
</tr>
<tr>
<td>'03-'05</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.075</td>
</tr>
</tbody>
</table>

**Coverage:** 192 monitoring sites in the EPA Regions (out of a total of 1,208 sites measuring ozone in 2007) that have sufficient data to assess ozone trends since 1978.

**Data source:** U.S. EPA, 2008b

---

Concentrations fall below the standard does not mean that all monitoring sites nationally or in any EPA Region also are below the standard. The indicator displays trends in the number of the 194 sites nationwide at which ozone concentrations exceeded the level of the 2008 standard, but this statistic is not displayed for each EPA Region.

Trends in ozone concentrations can be difficult to discern because of the year-to-year variations in the concentrations. By presenting data for rolling 3-year time periods, this indicator smooths out the “peaks” and “valleys” in the trend, making it easier to see the long-term trend. Three years is consistent with the 3-year period used to assess compliance with the ozone standards. For the 8-hour trends in this report, a 3-year average of the fourth highest daily maximum 8-hour concentration in each year is used to be consistent with the 8-hour ozone standard.

### What the Data Show

Between the 1978–1980 and 2005–2007 averaging periods, nationwide fourth highest daily maximum 8-hour ambient ozone concentrations decreased by 23 percent (Exhibit 2–13, panel A). Although the 8-hour ozone levels in 2005–2007 were the third lowest on record and the number of trend sites measuring ozone concentrations above the level of the 2008 8-hour NAAQS decreased by 20 percent over the time frame covered in this indicator (Exhibit 2–13, panel B), ambient air monitoring data collected up through 2007 and reported to EPA’s Air Quality System indicate that approximately 144.8 million people lived in counties where 8-hour average ozone concentrations are above the level of the primary ozone NAAQS (U.S. EPA, 2008a). Among the ten EPA Regions, the most substantial declines in 8 hour levels were observed in EPA Regions that originally had the highest ozone concentrations (EPA Regions 1 and 9) (Exhibit 2–14). Over nearly the entire period of record, Region 10 showed the lowest Regional ozone levels.

Also shown in Exhibit 2–13 (panel A) are the 90th and 10th percentiles based on the distribution of statistics at the monitoring sites. This provides additional graphical representation of the variability of measured concentrations across the monitoring sites for a given 3-year period. Thus, the graphic displays the concentration range where 80 percent of measured values occurred for that 3-year period.

In summary, despite reductions in ambient concentrations of ozone over the past quarter century and decreases in the emissions of ozone precursors since 1990 (the Nitrogen Oxides Emissions indicator; the VOC Emissions indicator), ozone remains one of the most persistent and ubiquitous air pollution issues in the U.S.

---

**Indicator Limitations**

- Short-term trends in ozone concentrations are often highly dependent on meteorological conditions. This complicates efforts to interpret data for any given year. Air quality trends over the longer term are far less likely to be influenced by unusual meteorological conditions.
- Because most of the monitoring sites are located in urban areas, the trends might not accurately reflect conditions outside the immediate urban monitoring areas.
- Because of the relatively small number of trend sites in some EPA Regions, the regional trends are subject to greater uncertainty than the national trends. Some EPA Regions with low average concentrations may include areas with high local concentrations, and vice versa.
- To ensure that long-term trends are based on a consistent set of monitoring sites, selection criteria were applied to identify the subset of ozone monitoring sites with sufficient data to assess trends since 1978. Monitoring sites without sufficient data are not included in the trend analysis. Some excluded monitoring sites reported ozone concentrations above the level of the ozone standard over the time frame covered by this indicator. In 2007, for example, more than 500 monitoring sites (in addition to the trend sites shown in Exhibit 2–13, panel B) recorded ozone concentrations above the level of the 2008 NAAQS, but did not have sufficient long-term data to be included in this indicator.
Data Sources
Summary data in this indicator were provided by EPA’s Office of Air Quality Planning and Standards, based on ozone ambient air monitoring data in EPA’s Air Quality System (U.S. EPA, 2008b) (http://www.epa.gov/ttn/airs/airsaqs/). National and regional trends in this indicator are based on the subset of ozone monitoring stations that have sufficient data to assess trends since 1978.

References


